Browse Results

Showing 31,276 through 31,300 of 74,140 results

High-Bandwidth Memory Interface

by Chulwoo Kim Junyoung Song Hyun-Woo Lee

This book provides an overview of recent advances in memory interface design at both the architecture and circuit levels. Coverage includes signal integrity and testing, TSV interface, high-speed serial interface including equalization, ODT, pre-emphasis, wide I/O interface including crosstalk, skew cancellation, and clock generation and distribution. Trends for further bandwidth enhancement are also covered.

High-Conductivity Channels in Space (Springer Series on Atomic, Optical, and Plasma Physics #103)

by Victor Apollonov

This book discusses the physics of conductive channel development in space, air and vacuums and summarizes the attempts to create super-long conductive channels to study the upper atmosphere and to complete specific tasks related to energy transmission from the space to earth with high-voltage high repetition rate electrical sources. Conductive channels are produced by the laser jet engine vehicle-propulsion under the influence of powerful high repetition rate pulse-periodic laser radiation by CO2-laser, solid state Nd YAG,HF/DF laser systems generated with each pulse of the powerful laser conductive dust plasma. The book also presents the experimental and theoretical results of conductive canal modeling: the laser jet engine vehicle “Impulsar”, which can reach the lower layers of the ionosphere in several hundred seconds. Further, the book explores the development of lightning protection systems. The so-called long laser spark is generated to provide the conditions for connecting a thunderstorm cloud with a grounded metal rod, i.e. a classical lightning rod. Such conductivity channels can be used for energy transmission, overvoltage protection systems, transport of charged particle beams and plasma antennas. It provides the theoretical and experimental basis of high repetition rate P-P mode of operation for high power lasers (COIL, HF/DF, CO2,Nd YAG). It describes high efficiency and excellent beam quality disk lasers used for numerous applications, including surface treatment of dielectric materials in microelectronics, cutting, drilling, welding, polishing and cleaning of the surface and other technological operations. Lastly it investigates how megawatt mono-module disk lasers could be used to solve various problems: small satellites launched by lasers, formation of super-long conducting channels in space and atmosphere, cleaning of the near-earth space from the space debris and related applications.

High-Density Lipoproteins as Biomarkers and Therapeutic Tools: Volume 1. Impacts of Lifestyle, Diseases, and Environmental Stressors on HDL

by Kyung-Hyun Cho

This book is the first of two volumes that offer a comprehensive, up-to-date account of current knowledge regarding high-density lipoprotein (HDL), the changes that occur in HDL under different conditions, the clinical applications of HDL, and means of enhancing HDL functionality. HDL comprises a diverse group of lipoproteins and its composition and metabolism are dynamic. In this volume, the focus is on the changes observed in HDL under different health statuses, with particular attention to the functional and structural correlations of HDL and apolipoprotein A-1. The impacts of a wide variety of factors on HDL are examined in depth, covering, for example, diet, exercise, smoking, age, diverse diseases, and different forms of environmental pollution. It has long been known that HDL has anti-atherosclerotic and antidiabetic properties, and more recently its anti-aging activities have been recognized. These benefits of HDL are highly dependent on its lipids, proteins, apolipoproteins, and enzymes, and specifically their composition and ratios. In documenting the latest knowledge in this field, this volume will be of interest to both researchers and clinicians.

High-Density Lipoproteins as Biomarkers and Therapeutic Tools: Volume 2. Improvement and Enhancement of HDL and Clinical Applications

by Kyung-Hyun Cho

This book is the second of two volumes that offer a comprehensive, up-to-date account of current knowledge regarding high-density lipoprotein (HDL), the changes that occur in HDL under different conditions, the clinical applications of HDL, and means of enhancing HDL functionality. In this volume, the focus is on the improvement of HDL, enhancement of its functionality, and the use of HDL for therapeutic purposes. In the first section, up-to-date information is provided on such topics as the tumor regression-promoting and antidiabetic activities of reconstituted HDL containing V156K apolipoprotein A-I, the enhancement of HDL effects by high doses of vitamin C, the benefits derived from incorporation of growth hormones 1 and 2 into rHDL, and the biological functions of omega-3 linolenic acid in rHDL. The enhancement of HDL functionality by policosanol and the resultant benefits are thoroughly examined in a separate section. Readers will also find the latest information on clinical applications of HDL. Here, specific topics include the enhancement of adenoviral gene delivery and the delivery of rapamycin. In documenting the latest knowledge in this field, this volume will be of interest to both researchers and clinicians.

High-Density and De-Densified Smart Campus Communications: Technologies, Integration, Implementation and Applications

by Daniel Minoli Jo-Anne Dressendofer

Discover how to design, deliver, and implement high-density communications solutions High-Density Smart Campus Communications: Technologies, Integration, Implementation and Applications delivers a concise synthesis of the deployment technologies, strategies, and implementation issues that arise in the design and application of real-world high-density communications environments in airports, stadiums, convention centers, shopping malls, classrooms, hospitals, cruise ships, and more. You'll learn future-oriented strategies for the implementation of next-generation Wi-Fi and 5G communications networks in high density environments, like smart airposrts, advanced airport robotics, and wayfinding. You’ll also discover effective deployment strategies using a comprehensive case study based on a top-10 airport deployment by the Slice Wireless team. The book includes information about security requirements, large and boutique solution providers, applications, unbundled services, implementation planning and design, as well as operations and network management. An epilogue written by Josie Jo-Anne Dressendofer of Slice Wireless concludes the text. Readers will also benefit from the inclusion of: A thorough introduction to background and functional requirements for high density communications, including requirements for airports, stadiums, convention centers, classrooms, train and subway stations, and smart cities An exploration of traditional voice and cellular technology, including DAS designs and architectures and microcellularization Practical discussions of traditional data and Wi-Fi, including throughput/interference and security A treatment of evolved hotspot connectivity, including Wi-Fi and 5G Perfect for telecommunication researchers and engineers, networking professionals, technology professionals, campus administrators, and equipment vendors, High-Density Smart Campus Communications will also earn a place in the libraries of senior undergraduate and graduate students in applied communications technologies.

High-Efficiency Solar Cells

by Xiaodong Wang Zhiming M. Wang

As part of the effort to increase the contribution of solar cells (photovoltaics) to our energy mix, this book addresses three main areas: making existing technology cheaper, promoting advanced technologies based on new architectural designs, and developing new materials to serve as light absorbers. Leading scientists throughout the world create a fundamental platform for knowledge sharing that combines the physics, materials, and device architectures of high-efficiency solar cells. While providing a comprehensive introduction to the field, the book highlights directions for further research, and is intended to stimulate readers' interest in the development of novel materials and technologies for solar energy applications.

High-Efficient Low-Cost Photovoltaics: Recent Developments (Springer Series in Optical Sciences #140)

by Vesselinka Petrova-Koch Rudolf Hezel Adolf Goetzberger

This book offers a bird’s-eye view of the recent development trends in photovoltaics – a big business field that is rapidly growing and well on its way to maturity. The book describes current efforts to develop highly efficient, low-cost photovoltaic devices based on crystalline silicon, III–V compounds, copper indium gallium selenide (CIGS) and perovskite photovoltaic cells along with innovative, cost-competitive glass/ flexible tubular glass concentrator modules and systems, highlighting recent attempts to develop highly efficient, low-cost, flexible photovoltaic cells based on CIGS and perovskite thin films. This second edition presents, for the first time, the possible applications of perovskite modules together with Augsburger Tubular photovoltaics.

High-Energy Charged Particles

by Shu Seki Tsuneaki Sakurai Masaaki Omichi Akinori Saeki Daisuke Sakamaki

This book features comprehensive explanations from the classical theory of high-energy particle interactions with matter to their use for a novel nanofabrication technique for various organic soft materials. Potential readers include scientists and engineers in both academia and industry, as well as students of materials science, nanotechnology, and nuclear power engineering. Readers will learn about the historical research background of radiation chemistry and interactions of an accelerated particle with matter, and then move on to recent research topics having to do with nanofabrication of soft materials by using single charged particles with high energy. Target materials of the highlighted novel technique include proteins, thermo-responsive and photo-responsive polymers, semiconducting polymers, and even small organic molecules. The descriptions of these various newly developed nanomaterials will interest a broad spectrum of readers and provide them with a new perspective. The many conceptual illustrations and microscopic images of nanomaterials that are included will help readers to easily understand the contents of the book.

High-Energy Chemistry and Processing in Liquids

by Yoshie Ishikawa Takahiro Nakamura Morihisa Saeki Tadatake Sato Teruki Sugiyama Hiroyuki Wada Tomoyuki Yatsuhashi

This book focuses on chemical reactions and processing under extreme conditions—how materials react with highly concentrated active species and/or in a very confined high-temperature and high-pressure volume. Those ultimate reaction environments created by a focused laser beam, discharges, ion bombardments, or microwaves provide characteristic nano- and submicron-sized products and functional nanostructures. The book explores the chemistry and processing of metals and non-metals as well as molecules that are strongly dependent on the energy deposition processes and character of the materials. Descriptions of a wide range of topics are given from the perspective of a variety of research methodologies, material preparations, and applications. The reader is led to consider and review how a high-energy source interacts with materials, and what the key factors are that determine the quality and quantity of nanoproducts and nano-processing.

High-Energy Ecologically Safe HF/DF Lasers: Physics of Self-Initiated Volume Discharge-Based HF/DF Lasers

by Victor V. Apollonov Sergey Yu. Kazantsev

This book explores new principles of Self-Initiating Volume Discharge for creating high-energy non-chain HF(DF) lasers, as well as the creation of highly efficient lasers with output energy and radiation power in the spectral region of 2.6–5 μm. Today, sources of high-power lasing in this spectral region are in demand in various fields of science and technology including remote sensing of the atmosphere, medicine, biological imaging, precision machining and other special applications. These applications require efficient laser sources with high pulse energy, pulsed and average power, which makes the development of physical fundamentals of high-power laser creation and laser complexes of crucial importance. High-Energy Ecologically Safe HF/DF Lasers: Physics of Self-Initiated Volume Discharge-Based HF/DF Lasers examines the conditions of formation of SSVD, gas composition and the mode of energy input into the gas on the efficiency and radiation energy of non-chain HF(DF) lasers. Key Features: Shares research results on SSVD in mixtures of non-chain HF(DF) lasers Studies the stability and dynamics of the development of SSVD Discusses the effect of the gas composition and geometry of the discharge gap (DG) on its characteristics Proposes recommendations for gas composition and for the method of obtaining SSVD in non-chain HF(DF) lasers Develops simple and reliable wide-aperture non-chain HF(DF) lasers and investigates their characteristics Investigates the possibilities of expanding the lasing spectrum of non-chain HF(DF) lasers

High-Energy Molecular Lasers

by V. V. Apollonov

This book displays the physics and design of high-power molecular lasers. The lasers described are self-controlled volume-discharge lasers. The book explains self-sustained discharge lasers, self-initiated discharge lasers and technical approaches to laser design. Important topics discussed are laser efficiency, laser beam quality and electric field homogeneity. The book contains many new innovative applications.

High-Energy-Density Fuels for Advanced Propulsion: Design and Synthesis

by Ji-Jun Zou Xiangwen Zhang Lun Pan

Covers the theory and practice of designing, synthesizing, and improving the performance of fuels This book provides readers with the fundamentals on high-energy-density fuels and their potential in advanced aerospace propulsion. It comprehensively and systematically demonstrates both the theory and practice of creating, processing, and refining the performance of fuels, all while connecting the past, present, and future of fuel chemistry and technology. It covers a wide range of fuels including polycyoalkane fuels, strained fuels, alky-diamondoid fuels, and hypergolic and nanofluid fuels derived from fossil and biomass. It also describes the important aspects of high-energy-density (HED) fuels, including molecular design, synthesis route, physiochemical properties, and their application in improving aircraft performance. In addition, the book features vivid schematics and illustrations throughout to enhance accessibility to the relevant theory and technologies. High-Energy-Density Fuels for Advanced Propulsion begins by introducing readers to the topic before delving into the development history and basics of aerospace fuels. It discusses the general properties and requirements of aerospace fuels, as well as the overall development. The book also covers the design and synthesis of green hypergolic liquid fuels, the formulation and synthesis of gelled fuels, the combustion properties of fuels and the methods for improving them, and more. A much-needed, complete overview of an important topic on fuel chemistry and technology for a range of fuels, including aerospace propulsion technology Provides readers with inspirations for new development of advanced aerospace fuels Discusses how HED fuels can improve the performance of aircraft Offers chapters covering fuels such as polycyoalkane, strained, alky-diamondoid, hypergolic, and nanofluid fuels High-Energy-Density Fuels for Advanced Propulsion is an excellent resource for those working in the fields of fuel chemistry, fuel technology, and aerospace propulsion technology, and is an ideal reference book for researchers, engineers, and students majoring in chemical science and engineering, mechanical engineering, and aerospace engineering.

High-Entropy Alloy Superconductors: Exotic Properties, Applications and Materials Design (Springer Series in Solid-State Sciences #202)

by Jiro Kitagawa Yoshikazu Mizuguchi

This book offers a comprehensive survey of the latest research concerning high-entropy alloy (HEA) superconductors, an emerging topic which has attracted significant attention since their discovery in 2014. HEAs represent a novel class of materials introduced in 2004, renowned for their exceptional mechanical attributes, robust resistance to corrosion, and remarkable thermal stability, among other characteristics. Superconductivity has emerged as a particularly prominent subject in this domain. Recent important findings are robust superconductivity under extraordinarily high pressure or ion irradiation, possible unconventional superconductivity, enhancement of bulk superconductivity, and high critical current density. In this book, HEA superconductors are classified into two primary categories: The first class encompasses alloy systems characterized by body-centered cubic and hexagonal close-packed structures; and the second class comprises intermetallic types. In each of these classes, the authors expound upon the exotic properties, applications, and materials design, aligning with the overarching themes of their work. This book delivers a topical and timely discussion of superconductivity associated with the high-entropy state, the potential applications under consideration, and the intricacies of materials design. These recent discoveries are poised to captivate many researchers in materials science, particularly those engaged in high-entropy alloys and the realm of superconducting properties and technology.

High-Entropy Alloys

by Peter K. Liaw Michael C. Gao Jien-Wei Yeh Yong Zhang

This book provides a systematic and comprehensive description of high-entropy alloys (HEAs). The authors summarize key properties of HEAs from the perspective of both fundamental understanding and applications, which are supported by in-depth analyses. The book also contains computational modeling in tackling HEAs, which help elucidate the formation mechanisms and properties of HEAs from various length and time scales.

High-Entropy Materials: A Brief Introduction

by Yong Zhang

This book draws on the latest research to discuss the history and development of high-entropy alloys and ceramics in bulk, film, and fiber form. High-entropy materials have recently been developed using the entropy of mixing and entropy of configuration of materials, and have proven to exhibit unique properties superior to those of conventional materials. The field of high-entropy alloys was born in 2004, and has since been developed for both scientific and engineering applications. Although there is extensive literature, this field is rapidly transforming. This book highlights the cutting edge of high-entropy materials, including their fundamentals and applications. Above all, it reflects two major milestones in their development: the equi-atomic ratio single-phase high-entropy alloys; and the non-equi-atomic ratio dual-phase high-entropy alloys.

High-Entropy Materials: Advances and Applications (Emerging Materials and Technologies)

by Yong Zhang

Research in the field of high-entropy materials is advancing rapidly. High-Entropy Materials: Advances and Applications focuses on materials discovered using the high-entropy alloys (HEA) strategy. It discusses various types of high-entropy materials, such as face-centered cubic (FCC) and body-centered cubic (BCC) HEAs, films and coatings, fibers, and powders and hard-cemented carbides, along with current research status and applications: • Describes, compositions and processing of high-entropy materials. • Summarizes industrially valuable alloys found in high-entropy materials that hold promise for promotion and application. • Explains how high-entropy materials can be used in many fields and can outperform traditional materials. This book is aimed at researchers, advanced students, and academics in materials science and engineering and related disciplines.

High-Entropy Materials: From Basics to Applications

by Yanchun Zhou Huimin Xiang Fu-Zhi Dai

High-Entropy Materials Significant update of knowledge in the field of high-entropy materials, including promising new high-entropy ceramics High-Entropy Materials provides information on state-of-the-art development in the field of high-entropy materials, including high-entropy alloys, high-entropy ceramics, and a variety of their applications, covering many core topics to provide a thorough and detailed overview of the subject. The book also thoroughly explores the applications of high-entropy materials in various areas, such as EBC/TBC coating, superhard and wear resistance coating, nuclear energy, batteries, catalysts, thermoelectric, supercapacitors, biocompatible structure, and microelectronics. In High-Entropy Materials, readers can expect to find specific information on: Basics of high entropy materials, structural features and thermodynamics of high-entropy materials, and theoretical design in high-entropy materials Synthesis and processing of high-entropy materials and characterization of high-entropy materials, as well as their mechanical and functional properties Challenges and future directions of high-entropy materials, a relatively new type of material that has been in development only since the early 2000s How high-entropy materials are a horizon-broadening class of materials that can significantly further humanity’s pursuit of progress Focusing on the fundamentals and developments of high-entropy alloys and ceramics as well as on their microstructure and properties for a wide range of applications, High-Entropy Materials is an essential resource on the subject for materials scientists, metallurgists, mechanical engineers, and professionals in the aerospace industries.

High-Entropy Materials: Theory, Experiments, and Applications

by Peter K. Liaw Jamieson Brechtl

This book discusses fundamental studies involving the history, modelling, simulation, experimental work, and applications on high-entropy materials. Topics include data-driven and machine-learning approaches, additive-manufacturing techniques, computational and analytical methods, such as density functional theory and multifractal analysis, mechanical behavior, high-throughput methods, and irradiation effects. The types of high-entropy materials consist of alloys, oxides, and ceramics. The book then concludes with a discussion on potential future applications of these novel materials.

High-Field Electrodynamics (Pure and Applied Physics)

by Frederic V. Hartemann

Tremendous technological developments and rapid progress in theory have opened a new area of modern physics called high-field electrodynamics: the systematic study of the interaction of relativistic electrons or positrons with ultrahigh-intensity, coherent electromagnetic radiation. This advanced undergraduate/graduate-level text provides a

High-Frequency GaN Electronic Devices

by Patrick Fay Debdeep Jena Paul Maki

This book brings together recent research by scientists and device engineers working on both aggressively-scaled conventional transistors as well as unconventional high-frequency device concepts in the III-N material system. Device concepts for mm-wave to THz operation based on deeply-scaled HEMTs, as well as distributed device designs based on plasma-wave propagation in polarization-induced 2DEG channels, tunneling, and hot-carrier injection are discussed in detail. In addition, advances in the underlying materials science that enable these demonstrations, and advancements in metrology that permit the accurate characterization and evaluation of these emerging device concepts are also included. Targeting readers looking to push the envelope in GaN-based electronics device research, this book provides a current, comprehensive treatment of device concepts and physical phenomenology suitable for applying GaN and related materials to emerging ultra-high-frequency applications. Offers readers an integrated treatment of the state of the art in both conventional (i.e., HEMT) scaling as well as unconventional device architectures suitable for amplification and signal generation in the mm-wave and THz regime using GaN-based devices, written by authors that are active and widely-known experts in the field;Discusses both conventional scaled HEMTs (into the deep mm-wave) as well as unconventional approaches to address the mm-wave and THz regimes;Provides “vertically integrated” coverage, including materials science that enables these recent advances, as well as device physics & design, and metrology techniques;Includes fundamental physics, as well as numerical simulations and experimental realizations.

High-Frequency Integrated Circuits

by Sorin Voinigescu

The design of high-frequency circuits has been made more difficult, and increasingly important, by semiconductor scaling to the nanoscale. Cicruit designers with an effective understanding of high-frequency circuit design are in increasing demand, especially with new techniques being realized. This textbook is a design-intensive overview of high-freqency integrated circuits for wireless and broadband systems. It has a unique approach by emphasizing the link between device and circuit performance, and for the first time in a textbook, layout techniques to maximize both device and circuit performance are described. Step-by-step design methods for wireless and wireline circuit bulding blocks are presented. Practical assignments and projects on RF or optical fiber circuits using nanoscale CMOS, SiGe BiCMOS and III-V technologies are included. This book is suitable as a supplementary text and practical design guide for senior undergraduate and graduate students, and practising engineers.

High-Frequency Isolated Bidirectional Dual Active Bridge DC–DC Converters with Wide Voltage Gain (Cpss Power Electronics Ser.)

by Deshang Sha Guo Xu

Written by experts, this book is based on recent research findings in high-frequency isolated bidirectional DC-DC converters with wide voltage range. It presents advanced power control methods and new isolated bidirectional DC-DC topologies to improve the performance of isolated bidirectional converters. Providing valuable insights, advanced methods and practical design guides on the DC-DC conversion that can be considered in applications such as microgrid, bidirectional EV chargers, and solid state transformers, it is a valuable resource for researchers, scientists, and engineers in the field of isolated bidirectional DC-DC converters.

High-Frequency Soft-Switching Transformerless Grid-Connected Inverters (CPSS Power Electronics Series)

by Yun Liu Huafeng Xiao Ruibin Wang Chenhui Niu Kairong Qian

This book is essential and valuable reference for graduate students and academics majored in power electronics, engineers engaged in developing distributed grid-connected inverters, and senior undergraduate students majored in electrical engineering and automation engineering. Soft-switching (SS) technique is an important way to achieve high conversion efficiency and high switching frequency for power converters, which is beneficial to improve power density and reduce volume and cost of power electronics equipment. This book mainly discusses SS technique for transformerless grid-connected inverters (TLIs), and a SS configuration named as “Freewheeling-Resonance-Tank Inverters” is proposed for TLIs fulfilling requirements of switching loss-free, full power factor range, and constant common-mode voltage performance. The detailed theoretical analysis and experimental validations are presented from ZCT and ZVT type topologies, respectively.

High-Frequency and Microwave Circuit Design

by Charles Nelson

An integral part of any communications system, high-frequency and microwave design stimulates major progress in the wireless world and continues to serve as a foundation for the commercial wireless products we use every day. The exceptional pace of advancement in developing these systems stipulates that engineers be well versed in multiple areas of electronics engineering. With more illustrations, examples, and worked problems, High-Frequency and Microwave Circuit Design, Second Edition provides engineers with a diverse body of knowledge they can use to meet the needs of this rapidly progressing field.The book details the modulation and demodulation of circuits and relates resonant circuits to practical needs. The author provides a logical progression of material that moves from medium frequencies to microwave frequencies. He introduces rectangular waveguides as high-pass devices and explains conditions under which dielectric breakdown may limit the amount of power that may be transmitted in a completely expanded chapter. The section on antennas is completely updated to demystify the useful characteristic of antennas and relate their performance to the requirements of digital communication systems. Exploring the latest developments in communications engineering, this reference outlines a variety of topics using sufficient mathematical derivations and provides an overview of the concepts engineers need to understand current technologies and develop those of the future.

High-Impact Design for Online Courses: Blueprinting Quality Digital Learning in Eight Practical Steps

by Andrea Gregg Bethany Simunich Penny Ralston-Berg

High-Impact Design for Online Courses introduces higher education professionals to an eight-step course design model that leverages the unique considerations of online and hybrid modalities at each stage in the process. Though relevant to and informed by instructional designers and educational technologists, this book is specifically geared toward faculty who lack the administrative and technical supports they need to thrive in the new normal. Each chapter includes step-by-step guidance on learner analysis, course structure, appropriate activities and assessments, continuous improvement, and other key elements of a successful digital course. Teachers across disciplines and levels of experience will come away newly inspired and motivated with fresh insights into planning and drafting, practical tips for pedagogy and design, opportunities for self-reflection and course revision, and implications for learner-centered delivery.

Refine Search

Showing 31,276 through 31,300 of 74,140 results