Browse Results

Showing 32,376 through 32,400 of 64,072 results

Introduction to Climate Change Management: Transitioning to a Low-Carbon Economy (Springer Climate)

by John C. Shideler Jean Hetzel

This book provides climate students with the basic scientific background to climate change management. Students will learn about international and national approaches to climate change management defined in voluntary initiatives as well as in national law and international agreements. The book describes mitigation and adaptation measures, monitoring and reporting of greenhouse gas emissions, and strategies for achieving a low-carbon economy, including green finance.This book combines theory and practice, introducing students to the conceptual background but also taking a professional and technical approach with case studies and low carbon toolkits. Filled with didactic elements such as concept schemes, tables, charts, figures, examples, as well as questions and answers at the end of the chapters, this book aims to engage critical thinking and the discussion of important topics of our days.The low-carbon strategy is one of the answers to limiting the greenhouse effect on our planet. This strategy is to minimize the overall carbon consumption in the life cycle of the products we consume, from the extraction of raw materials to the end of their life. The future is being built today. This book will guide its readers along the path of imagining and realizing a low-carbon economy.”

Introduction to Coding Theory (Discrete Mathematics and Its Applications)

by Jurgen Bierbrauer

This book is designed to be usable as a textbook for an undergraduate course or for an advanced graduate course in coding theory as well as a reference for researchers in discrete mathematics, engineering and theoretical computer science. This second edition has three parts: an elementary introduction to coding, theory and applications of codes, and algebraic curves. The latter part presents a brief introduction to the theory of algebraic curves and its most important applications to coding theory.

Introduction To Combustion (Combustion Science And Technology Book Ser. #Vol. 1)

by Warren C. Strahle

This book presents basic information about combustion, mostly in the form of examples. It is a textbook for a one-semester or one-quarter course for juniors or seniors in mechanical, aerospace, chemical, or civil engineering.

Introduction to Communication Systems

by Upamanyu Madhow

Showcasing the essential principles behind modern communication systems, this accessible undergraduate textbook provides a solid introduction to the foundations of communication theory. Carefully selected topics introduce students to the most important and fundamental concepts, giving students a focused, in-depth understanding of core material, and preparing them for more advanced study. Abstract concepts are introduced to students 'just in time' and reinforced by nearly 200 end-of-chapter exercises, alongside numerous MATLAB code fragments, software problems and practical lab exercises, firmly linking the underlying theory to real-world problems, and providing additional hands-on experience. Finally, an accessible lecture-style organisation makes it easy for students to navigate to key passages, and quickly identify the most relevant material. Containing material suitable for a one- or two-semester course, and accompanied online by a password-protected solutions manual and supporting instructor resources, this is the perfect introductory textbook for undergraduate students studying electrical and computer engineering.

Introduction to Communications Technologies: A Guide for Non-Engineers, Third Edition

by Stephan Jones Ronald J. Kovac Frank M. Groom

Thanks to the advancement of faster processors within communication devices, there has been a rapid change in how information is modulated, multiplexed, managed, and moved. While formulas and functions are critical in creating the granular components and operations of individual technologies, understanding the applications and their purposes in the

An Introduction to Community Development

by Rhonda Phillips Robert Pittman

Beginning with the foundations of community development, An Introduction to Community Development offers a comprehensive and practical approach to planning for communities. Road-tested in the authors’ own teaching, and through the training they provide for practicing planners, it enables students to begin making connections between academic study and practical know-how from both private and public sector contexts. An Introduction to Community Development shows how planners can utilize local economic interests and integrate finance and marketing considerations into their strategy. Most importantly, the book is strongly focused on outcomes, encouraging students to ask: what is best practice when it comes to planning for communities, and how do we accurately measure the results of planning practice? This newly revised and updated edition includes: increased coverage of sustainability issues, discussion of localism and its relation to community development, quality of life, community well-being and public health considerations, and content on local food systems. Each chapter provides a range of reading materials for the student, supplemented with text boxes, a chapter outline, keywords, and reference lists, and new skills based exercises at the end of each chapter to help students turn their learning into action, making this the most user-friendly text for community development now available.

Introduction to Compact and Automotive Diesels

by Edward Ralbovsky

This book is an excellent introduction to compact and automotive diesel engines. How the engines are used in a variety of equipment is explained in a detailed, yet easy to understand format. Topics of theory, operation, service, diagnosis and troubleshooting of diesel engines make this a practical and valuable resource. The material is geared toward a reader with an understanding of gasoline engines with a need to know about diesel engines. This book will supplement a service manual well with its extensive illustrations from US and foreign manufacturers.

An Introduction to Complex Systems: Society, Ecology, and Nonlinear Dynamics

by Paul Fieguth

This undergraduate text explores a variety of large-scale phenomena - global warming, ice ages, water, poverty - and uses these case studies as a motivation to explore nonlinear dynamics, power-law statistics, and complex systems. Although the detailed mathematical descriptions of these topics can be challenging, the consequences of a system being nonlinear, power-law, or complex are in fact quite accessible. This book blends a tutorial approach to the mathematical aspects of complex systems together with a complementary narrative on the global/ecological/societal implications of such systems. Nearly all engineering undergraduate courses focus on mathematics and systems which are small scale, linear, and Gaussian. Unfortunately there is not a single large-scale ecological or social phenomenon that is scalar, linear, and Gaussian. This book offers students insights to better understand the large-scale problems facing the world and to realize that these cannot be solved by a single, narrow academic field or perspective. Instead, the book seeks to emphasize understanding, concepts, and ideas, in a way that is mathematically rigorous, so that the concepts do not feel vague, but not so technical that the mathematics get in the way. The book is intended for undergraduate students in a technical domain such as engineering, computer science, physics, mathematics, and environmental studies.

An Introduction to Complex Systems: Making Sense of a Changing World​

by Joe Tranquillo

This book explores the interdisciplinary field of complex systems theory. By the end of the book, readers will be able to understand terminology that is used in complex systems and how they are related to one another; see the patterns of complex systems in practical examples; map current topics, in a variety of fields, to complexity theory; and be able to read more advanced literature in the field. The book begins with basic systems concepts and moves on to how these simple rules can lead to complex behavior. The author then introduces non-linear systems, followed by pattern formation, and networks and information flow in systems. Later chapters cover the thermodynamics of complex systems, dynamical patterns that arise in networks, and how game theory can serve as a framework for decision making. The text is interspersed with both philosophical and quantitative arguments, and each chapter ends with questions and prompts that help readers make more connections.

An Introduction to Composite Materials (Cambridge Solid State Science Ser.)

by T. W. Clyne D. Hull

This fully expanded and updated edition provides both scientists and engineers with all the information they need to understand composite materials, covering their underlying science and technological usage. It includes four completely new chapters on surface coatings, highly porous materials, bio-composites and nano-composites, as well as thoroughly revised chapters on fibres and matrices, the design, fabrication and production of composites, mechanical and thermal properties, and industry applications. Extensively expanded referencing engages readers with the latest research and industrial developments in the field, and increased coverage of essential background science makes this a valuable self-contained text. A comprehensive set of homework questions, with model answers available online, explains how calculations associated with the properties of composite materials should be tackled, and educational software accompanying the book is available online. An invaluable text for final-year undergraduates in materials science and engineering, and graduate students and researchers in academia and industry.

An Introduction to Composite Materials

by D. Hull T. W. Clyne

This new edition has been greatly enlarged and updated to provide both scientists and engineers with a clear and comprehensive understanding of composite materials. In describing both theoretical and practical aspects of their production, properties and usage, the book crosses the borders of many disciplines. Topics covered include: fibers, matrices, laminates and interfaces; elastic deformation, stress and strain, strength, fatigue crack propagation and creep resistance; toughness and thermal properties; fatigue and deterioration under environmental conditions; fabrication and applications. Coverage has been increased to include polymeric, metallic and ceramic matrices and reinforcement in the form of long fibers, short fibers and particles. Designed primarily as a teaching text for final year undergraduates in materials science and engineering, this book will also interest undergraduates and postgraduates in chemistry, physics, and mechanical engineering. In addition, it will be an excellent source book for academic and technological researchers on materials.

Introduction to Composite Materials

by StephenW. Tsai

A widely used basic text by two recognized authorities. A unified and disciplined approach; advanced concepts reduced to easy-to-use charts, formulas and numerical examples.

Introduction to Composite Materials Design (Composite Materials)

by Ever J. Barbero

The Third Edition of Introduction to Composite Materials Design is a practical, design-oriented textbook aimed at students and practicing engineers learning analysis and design of composite materials and structures. Readers will find the Third Edition to be both highly streamlined for teaching, with new comprehensive examples and exercises emphasizing design, as well as complete with practical content relevant to current industry needs. Furthermore, the Third Edition is updated with the latest analysis techniques for the preliminary design of composite materials, including universal carpet plots, temperature dependent properties, and more. Significant additions provide the essential tools for mastering Design for Reliability as well as an expanded material property database.

An Introduction to Compressible Flow

by Forrest E. Ames Clement C. Tang

An Introduction to Compressible Flow, Second Edition covers the material typical of a single-semester course in compressible flow. The book begins with a brief review of thermodynamics and control volume fluid dynamics, then proceeds to cover isentropic flow, normal shock waves, shock tubes, oblique shock waves, Prandtl-Meyer expansion fans, Fanno-line flow, Rayleigh-line flow, and conical shock waves. The book includes a chapter on linearized flow following chapters on oblique shocks and Prandtl-Meyer flows to appropriately ground students in this approximate method. It includes detailed appendices to support problem solutions and covers new oblique shock tables, which allow for quick and accurate solutions of flows with concave corners. The book is intended for senior undergraduate engineering students studying thermal-fluids and practicing engineers in the areas of aerospace or energy conversion. This book is also useful in providing supplemental coverage of compressible flow material in gas turbine and aerodynamics courses.

An Introduction to Compressible Flows with Applications: Quasi-One-Dimensional Approximation and General Formulation for Subsonic, Transonic and Supersonic Flows (SpringerBriefs in Mathematics)

by José Pontes Norberto Mangiavacchi Gustavo R. Anjos

This book offers a concise and practical survey of the principles governing compressible flows, along with selected applications.It starts with derivation of the time-dependent, three-dimensional equation of compressible potential flows, and a study of weak waves, including evaluation of the sound speed in gases. The following chapter addresses quasi-one-dimensional flows, the study of normal shock waves, and flow in ducts with constant cross section subjected to friction and/or heat transfer. It also investigates the effects of friction and heat transfer in ducts with variable cross section. The chapter ends by pointing to the analogy between one-dimensional compressible flows and open channel hydraulics.Further, the book discusses supersonic flows, including the study of oblique shock waves, and supersonic flows over corners and wedges. It also examines Riemann problems, numerical resolution of the wave equation, and of nonlinear hyperbolic problems, including propagation of strong waves. A subsequent chapter focuses on the small perturbation theory of subsonic, transonic and supersonic flows around slender bodies aligned or almost aligned to the uniform inflow. In particular, it explores subsonic and supersonic flows over a wavy wall. Lastly, an appendix with a short derivation of the Fluid Mechanics basic equations is included.The final chapter addresses the problem of transonic flows where both subsonic and supersonic are present. Lastly, an appendix with a short derivation of the Fluid Mechanics basic equations is included.Illustrated with several practical examples, this book is a valuable tool to understand the most fundamental mathematical principles of compressible flows. Graduate Mathematics, Physics and Engineering students as well as researchers with an interest in the aerospace sciences benefit from this work.

Introduction to Computational Contact Mechanics

by Alexander Konyukhov Ridvan Izi

Introduction to Computational Contact Mechanics: A Geometrical Approach covers the fundamentals of computational contact mechanics and focuses on its practical implementation. Part one of this textbook focuses on the underlying theory and covers essential information about differential geometry and mathematical methods which are necessary to build the computational algorithm independently from other courses in mechanics. The geometrically exact theory for the computational contact mechanics is described in step-by-step manner, using examples of strict derivation from a mathematical point of view. The final goal of the theory is to construct in the independent approximation form /so-called covariant form, including application to high-order and isogeometric finite elements. The second part of a book is a practical guide for programming of contact elements and is written in such a way that makes it easy for a programmer to implement using any programming language. All programming examples are accompanied by a set of verification examples allowing the user to learn the research verification technique, essential for the computational contact analysis. Key features: Covers the fundamentals of computational contact mechanics Covers practical programming, verification and analysis of contact problems Presents the geometrically exact theory for computational contact mechanics Describes algorithms used in well-known finite element software packages Describes modeling of forces as an inverse contact algorithm Includes practical exercises Contains unique verification examples such as the generalized Euler formula for a rope on a surface, and the impact problem and verification of thå percussion center Accompanied by a website hosting software Introduction to Computational Contact Mechanics: A Geometrical Approach is an ideal textbook for graduates and senior undergraduates, and is also a useful reference for researchers and practitioners working in computational mechanics.

Introduction to Computational Engineering with MATLAB® (Chapman & Hall/CRC Numerical Analysis and Scientific Computing Series)

by Timothy Bower

Introduction to Computational Engineering with MATLAB® aims to teach readers how to use MATLAB programming to solve numerical engineering problems. The book focuses on computational engineering with the objective of helping engineering students improve their numerical problem-solving skills. The book cuts a middle path between undergraduate texts that simply focus on programming and advanced mathematical texts that skip over foundational concepts, feature cryptic mathematical expressions, and do not provide sufficient support for novices.Although this book covers some advanced topics, readers do not need prior computer programming experience or an advanced mathematical background. Instead, the focus is on learning how to leverage the computer and software environment to do the hard work. The problem areas discussed are related to data-driven engineering, statistics, linear algebra, and numerical methods. Some example problems discussed touch on robotics, control systems, and machine learning.Features: Demonstrates through algorithms and code segments how numeric problems are solved with only a few lines of MATLAB code Quickly teaches students the basics and gets them started programming interesting problems as soon as possible No prior computer programming experience or advanced math skills required Suitable for students at undergraduate level who have prior knowledge of college algebra, trigonometry, and are enrolled in Calculus I MATLAB script files, functions, and datasets used in examples are available for download from http://www.routledge.com/9781032221410.

Introduction to Computational Fluid Dynamics: Development, Application and Analysis (Ane/Athena Books)

by Atul Sharma

This book is primarily for a first one-semester course on CFD; in mechanical, chemical, and aeronautical engineering. Almost all the existing books on CFD assume knowledge of mathematics in general and differential calculus as well as numerical methods in particular; thus, limiting the readership mostly to the postgraduate curriculum. In this book, an attempt is made to simplify the subject even for readers who have little or no experience in CFD, and without prior knowledge of fluid-dynamics, heattransfer and numerical-methods. The major emphasis is on simplification of the mathematics involved by presenting physical-law (instead of the traditional differential equations) based algebraic-formulations, discussions, and solution-methodology. The physical law based simplified CFD approach (proposed in this book for the first time) keeps the level of mathematics to school education, and also allows the reader to intuitively get started with the computer-programming. Another distinguishing feature of the present book is to effectively link the theory with the computer-program (code). This is done with more pictorial as well as detailed explanation of the numerical methodology. Furthermore, the present book is structured for a module-by-module code-development of the two-dimensional numerical formulation; the codes are given for 2D heat conduction, advection and convection. The present subject involves learning to develop and effectively use a product - a CFD software. The details for the CFD development presented here is the main part of a CFD software. Furthermore, CFD application and analysis are presented by carefully designed example as well as exercise problems; not only limited to fluid dynamics but also includes heat transfer. The reader is trained for a job as CFD developer as well as CFD application engineer; and can also lead to start-ups on the development of "apps" (customized CFD software) for various engineering applications. "Atul has championed the finite volume method which is now the industry standard. He knows the conventional method of discretizing differential equations but has never been satisfied with it. As a result, he has developed a principle that physical laws that characterize the differential equations should be reflected at every stage of discretization and every stage of approximation. This new CFD book is comprehensive and has a stamp of originality of the author. It will bring students closer to the subject and enable them to contribute to it."—Dr. K. Muralidhar, IIT Kanpur, INDIA

Introduction to Computational Fluid Dynamics: Development, Application and Analysis

by Atul Sharma

This more-of-physics, less-of-math, insightful and comprehensive book simplifies computational fluid dynamics for readers with little knowledge or experience in heat transfer, fluid dynamics or numerical methods. The novelty of this book lies in the simplification of the level of mathematics in CFD by presenting physical law (instead of the traditional differential equations) and discrete (independent of continuous) math-based algebraic formulations. Another distinguishing feature of this book is that it effectively links theory with computer program (code). This is done with pictorial as well as detailed explanations of implementation of the numerical methodology. It also includes pedagogical aspects such as end-of-chapter problems and carefully designed examples to augment learning in CFD code-development, application and analysis. This book is a valuable resource for students in the fields of mechanical, chemical or aeronautical engineering.

Introduction to Computational Materials Science

by Richard Lesar

Emphasising essential methods and universal principles, this textbook provides everything students need to understand the basics of simulating materials behaviour. All the key topics are covered from electronic structure methods to microstructural evolution, appendices provide crucial background material, and a wealth of practical resources are available online to complete the teaching package. Modelling is examined at a broad range of scales, from the atomic to the mesoscale, providing students with a solid foundation for future study and research. Detailed, accessible explanations of the fundamental equations underpinning materials modelling are presented, including a full chapter summarising essential mathematical background. Extensive appendices, including essential background on classical and quantum mechanics, electrostatics, statistical thermodynamics and linear elasticity, provide the background necessary to fully engage with the fundamentals of computational modelling. Exercises, worked examples, computer codes and discussions of practical implementations methods are all provided online giving students the hands-on experience they need.

Introduction to Computational Origami: The World of New Computational Geometry

by Ryuhei Uehara

This book focuses on origami from the point of view of computer science. Ranging from basic theorems to the latest research results, the book introduces the considerably new and fertile research field of computational origami as computer science. Part I introduces basic knowledge of the geometry of development, also called a net, of a solid. Part II further details the topic of nets. In the science of nets, there are numerous unresolved issues, and mathematical characterization and the development of efficient algorithms by computer are closely connected with each other. Part III discusses folding models and their computational complexity. When a folding model is fixed, to find efficient ways of folding is to propose efficient algorithms. If this is difficult, it is intractable in terms of computational complexity. This is, precisely, an area for computer science research. Part IV presents some of the latest research topics as advanced problems. Commentaries on all exercises included in the last chapter. The contents are organized in a self-contained way, and no previous knowledge is required. This book is suitable for undergraduate, graduate, and even high school students, as well as researchers and engineers interested in origami.

Introduction to Computer Holography: Creating Computer-Generated Holograms as the Ultimate 3D Image (Series in Display Science and Technology)

by Kyoji Matsushima

This book covers basic- to expert-level applications in computer holography, a strong candidate for the ultimate 3D display technology. The computer holography developed in the course of the past decade represents the basis of wave optics. Accordingly, the book presents the basic theory of wave optics and practical techniques for handling wave fields by means of the fast Fourier transform. Numerical techniques based on polygons, as well as mask-based techniques, are also presented for calculating the optical fields of virtual 3D models with occlusion processing. The book subsequently describes simulation techniques for very large-scale optical fields, and addresses the basics and concrete applications of simulation, offering a valuable resource for readers who need to employ it in the context of developing optical devices. To aid in comprehension, the main content is complemented by numerous examples of optical fields and photographs of reconstructed 3D images.

Introduction to Computing and Programming In Python: A Multimedia Approach

by Mark Guzdial Barbara Ericson

This book is a uniquely researched and up-to-date volume that is widely recognized for its successful introduction to the subject of Media Computation. Emphasizing creativity, classroom interaction, and in-class programming examples, the book takes a bold and unique approach to computation that engages students and applies the subject matter to the relevancy of digital media. <p><p> The Fourth Edition teaches students to program in an effort to communicate via social computing outlets, providing a unique approach that serves the interests of a broad range of students. Key Topics: Introduction to Computer Science and Media Computation; Introduction to Programming; Creating and Modifying Text; Modifying Pictures Using Loops; Picture Techniques with Selection; Modifying Pixels by Position; Modifying Sounds Using Loops; Modifying Samples in a Range; Making Sounds by Combining Pieces; Building Bigger Programs; Manipulating Text with Methods and Files; Advanced Text Techniques: Web and Information; Making Text for the Web; Creating and Modifying Movies; Speed; Functional Programming; Object Oriented Programming. <p><p> This book is useful for anyone interested in learning computer programming.

Introduction to Computing Applications in Forestry and Natural Resource Management

by Jingxin Wang

Due to the complexity of operational forestry problems, computing applications are becoming pervasive in all aspects of forest and natural resource management. This book provides a comprehensive introduction to computers and their applications in forest and natural resource management and is designed for both undergraduate and graduate students in forestry and natural resources. It introduces state-of-the-art applications for several of the most important computer technologies in terms of data acquisition, data manipulation, basic programming techniques, and other related computer and Internet concepts and applications. This book consists of six parts and 19 chapters.

An Introduction to Computing with Fuzzy Sets: Analysis, Design, and Applications (Intelligent Systems Reference Library #190)

by Witold Pedrycz

This book provides concise yet thorough coverage of the fundamentals and technology of fuzzy sets. Readers will find a lucid and systematic introduction to the essential concepts of fuzzy set-based information granules, their processing and detailed algorithms. Timely topics and recent advances in fuzzy modeling and its principles, neurocomputing, fuzzy set estimation, granulation–degranulation, and fuzzy sets of higher type and order are discussed. In turn, a wealth of examples, case studies, problems and motivating arguments, spread throughout the text and linked with various areas of artificial intelligence, will help readers acquire a solid working knowledge. Given the book’s well-balanced combination of the theory and applied facets of fuzzy sets, it will appeal to a broad readership in both academe and industry. It is also ideally suited as a textbook for graduate and undergraduate students in science, engineering, and operations research.

Refine Search

Showing 32,376 through 32,400 of 64,072 results