Browse Results

Showing 32,976 through 33,000 of 64,527 results

Introduction to Quantum Computing: From a Layperson to a Programmer in 30 Steps

by Hiu Yung Wong

This textbook introduces quantum computing to readers who do not have much background in linear algebra. The author targets undergraduate and master students, as well as non-CS and non-EE students who are willing to spend about 60 -90 hours seriously learning quantum computing. Readers will be able to write their program to simulate quantum computing algorithms and run on real quantum computers on IBM-Q. Moreover, unlike the books that only give superficial, “hand-waving” explanations, this book uses exact formalism so readers can continue to pursue more advanced topics based on what they learn from this book.Encourages students to embrace uncertainty over the daily classical experience, when encountering quantum phenomena;Uses narrative to start each section with analogies that help students to grasp the critical concept quickly;Uses numerical substitutions, accompanied by Python programming and IBM-Q quantum computer programming, as examples in teaching all critical concepts.

Introduction to Quantum Computing: From a Layperson to a Programmer in 30 Steps

by Hiu Yung Wong

This textbook introduces quantum computing to readers who do not have much background in linear algebra based on the self-study experience of the author as an engineer. The author targets undergraduate and master students who are willing to spend about 60 -90 hours seriously learning quantum computing. This book is also suitable for self-study and teaching videos for each chapter and more than 200 exercises with answers are provided. Readers will be able to write their program to simulate quantum computing algorithms and run on real quantum computers on IBM-Q. Moreover, unlike books that only give superficial, “hand-waving” explanations, this book uses exact formalism so readers can continue to pursue more advanced topics based on what they learn from this book

Introduction to Quantum Control and Dynamics (Advances in Applied Mathematics)

by Domenico D’Alessandro

The introduction of control theory in quantum mechanics has created a rich, new interdisciplinary scientific field, which is producing novel insight into important theoretical questions at the heart of quantum physics. Exploring this emerging subject, Introduction to Quantum Control and Dynamics presents the mathematical concepts and fundamental physics behind the analysis and control of quantum dynamics, emphasizing the application of Lie algebra and Lie group theory. To advantage students, instructors and practitioners, and since the field is highly interdisciplinary, this book presents an introduction with all the basic notions in the same place. The field has seen a large development in parallel with the neighboring fields of quantum information, computation and communication. The author has maintained an introductory level to encourage course use. After introducing the basics of quantum mechanics, the book derives a class of models for quantum control systems from fundamental physics. It examines the controllability and observability of quantum systems and the related problem of quantum state determination and measurement. The author also uses Lie group decompositions as tools to analyze dynamics and to design control algorithms. In addition, he describes various other control methods and discusses topics in quantum information theory that include entanglement and entanglement dynamics. Changes to the New Edition: New Chapter 4: Uncontrollable Systems and Dynamical Decomposition New section on quantum control landscapes A brief discussion of the experiments that earned the 2012 Nobel Prize in Physics Corrections and revised concepts are made to improve accuracy Armed with the basics of quantum control and dynamics, readers will invariably use this interdisciplinary knowledge in their mathematics, physics and engineering work.

Introduction to Quantum Electronics and Nonlinear Optics

by Sergey M. Smolskiy Vitaliy V. Shtykov

This textbook, based on the authors’ class-tested material, is accessible to students at the advanced undergraduate and graduate level in physics and engineering. While its primary function is didactic, this book’s comprehensive choice of topics and its clear and authoritative synthesis of ideas make it a useful reference for researchers, device engineers, and course instructors who wish to consolidate their knowledge of this field. The book takes the semi-classical approach where light is treated as a wave in accordance with the classical Maxwell equations, while matter is governed by quantum theory. It begins by introducing the postulates and mathematical framework of quantum theory, followed by the formalism of the density matrix which allows the transition from microscopic (quantum) quantities to macroscopic (classical) ones. Consequently, the equations describing the reaction of matter to the electromagnetic field in the form of polarization, magnetization, and current are derived. These equations (together with the Maxwell equations) form the complete system of equations sufficient to model a wide class of problems surrounding linear and nonlinear interactions of electromagnetic fields with matter. The nonlinear character of the governing equations determines parameters of the steady-state mode of the quantum generator and is also demonstrated in harmonic generation via propagation of laser radiation in various media. The touchstone description of magnetic phenomena will be of interest to scientists who deal with applications of magneto-resonance phenomena in biology and medicine. Other advanced topics covered include electric dipole transitions, magnetic dipole transitions, plasma transitions, and the devices that can be based on these and other electro-optical and nonlinear-optical systems. This textbook features numerous exercises, some of which are investigatory and some of which require computational solutions.

Introduction to Quantum Mechanics 2: Wave-Corpuscle, Quantization and Schrodinger's Equation

by Ibrahima Sakho

Quantum mechanics is the foundation of modern technology, due to its innumerable applications in physics, chemistry and even biology. This second volume studies Schrödinger's equation and its applications in the study of wells, steps and potential barriers. It examines the properties of orthonormal bases in the space of square-summable wave functions and Dirac notations in the space of states. This book has a special focus on the notions of the linear operators, the Hermitian operators, observables, Hermitian conjugation, commutators and the representation of kets, bras and operators in the space of states. The eigenvalue equation, the characteristic equation and the evolution equation of the mean value of an observable are introduced. The book goes on to investigate the study of conservative systems through the time evolution operator and Ehrenfest's theorem. Finally, this second volume is completed by the introduction of the notions of quantum wire, quantum wells of semiconductor materials and quantum dots in the appendices.

Introduction to Quantum Metrology

by Waldemar Nawrocki

This book presents the theory of quantum effects used in metrology and results of the author's own research in the field of quantum electronics. The book provides also quantum measurement standards used in many branches of metrology for electrical quantities, mass, length, time and frequency. This book represents the first comprehensive survey of quantum metrology problems. As a scientific survey, it propagates a new approach to metrology with more emphasis on its connection with physics. This is of importance for the constantly developing technologies and nanotechnologies in particular. Providing a presentation of practical applications of the effects used in quantum metrology for the construction of quantum standards and sensitive electronic components, the book is useful for a wide audience of physicists and metrologists in the broad sense of both terms. In 2014 a new system of units, the so called Quantum SI, is introduced. This book helps to understand and approve the new system to both technology and academic community.

Introduction to Quantum Metrology: The Revised SI System and Quantum Standards

by Waldemar Nawrocki

This book discusses the theory of quantum effects used in metrology, and presents the author’s research findings in the field of quantum electronics. It also describes the quantum measurement standards used in various branches of metrology, such as those relating to electrical quantities, mass, length, time and frequency.The first comprehensive survey of quantum metrology problems, it introduces a new approach to metrology, placing a greater emphasis on its connection with physics, which is of importance for developing new technologies, nanotechnology in particular. Presenting practical applications of the effects used in quantum metrology for the construction of quantum standards and sensitive electronic components, the book is useful for a broad range of physicists and metrologists. It also promotes a better understanding and approval of the new system in both industry and academia.This second edition includes two new chapters focusing on the revised SI system and satellite positioning systems. Practical realization (mise en pratique) the base units (metre, kilogram, second, ampere, kelvin, candela, and mole), new defined in the revised SI, is presented in details. Another new chapter describes satellite positioning systems and their possible applications. In satellite positioning systems, like GPS, GLONASS, BeiDou and Galileo, quantum devices – atomic clocks – serve wide population of users.

Introduction to Quantum Optics: From the Semi-classical Approach to Quantized Light

by Gilbert Grynberg Alain Aspect Claude Fabre Claude Cohen-Tannoudji

Covering a number of important subjects in quantum optics, this textbook is an excellent introduction for advanced undergraduate and beginning graduate students, familiarizing readers with the basic concepts and formalism as well as the most recent advances. The first part of the textbook covers the semi-classical approach where matter is quantized, but light is not. It describes significant phenomena in quantum optics, including the principles of lasers. The second part is devoted to the full quantum description of light and its interaction with matter, covering topics such as spontaneous emission, and classical and non-classical states of light. An overview of photon entanglement and applications to quantum information is also given. In the third part, non-linear optics and laser cooling of atoms are presented, where using both approaches allows for a comprehensive description. Each chapter describes basic concepts in detail, and more specific concepts and phenomena are presented in 'complements'.

An Introduction to Quantum Optics: Photon and Biphoton Physics (Series in Optics and Optoelectronics)

by Yanhua Shih

This book offers a complete revision for its introduction to the quantum theory of light, including notable developments as well as improvements in presentation of basic theory and concepts, with continued emphasis on experimental aspects. The author provides a thorough overview on basic methods of classical and quantum mechanical measurements in quantum optics, enabling readers to analyze, summarize, and resolve quantum optical problems. The broad coverage of concepts and tools and its practical, experimental emphasis set it apart from other available resources. New discussions of timely topics such as the concept of the photon and distinguishability bring the entire contents up to date. Key Features: Provides a complete update of a classic textbook for the field. Features many new topics, including optical coherence, coherent and incoherent imaging, turbulence-free interferometry. Includes new chapters for intensity fluctuation correlation and thermal light ghost imaging, and biphoton imaging. Offers a complete overhaul of the introductory theory to give a more coherent and thorough treatment. Expands on discussions of optical tests of quantum theory, Popper’s experiment, Einstein’s locality questions, and the delayed choice quantum eraser.

An Introduction to Quantum Transport in Semiconductors

by David K. Ferry

Throughout their college career, most engineering students have done problems and studies that are basically situated in the classical world. Some may have taken quantum mechanics as their chosen field of study. This book moves beyond the basics to highlight the full quantum mechanical nature of the transport of carriers through nanoelectronic structures. The book is unique in that addresses quantum transport only in the materials that are of interest to microelectronics—semiconductors, with their variable densities and effective masses. The author develops Green’s functions starting from equilibrium Green’s functions and going through modern time-dependent approaches to non-equilibrium Green’s functions, introduces relativistic bands for graphene and topological insulators and discusses the quantum transport changes that these bands induce, and discusses applications such as weak localization and phase breaking processes, resonant tunneling diodes, single-electron tunneling, and entanglement. Furthermore, he also explains modern ensemble Monte Carlo approaches to simulation of various approaches to quantum transport and the hydrodynamic approaches to quantum transport. All in all, the book describes all approaches to quantum transport in semiconductors, thus becoming an essential textbook for advanced graduate students in electrical engineering or physics.

Introduction to Queueing Networks: Theory ∩ Practice (Springer Series in Operations Research and Financial Engineering)

by J. MacGregor Smith

The book examines the performance and optimization of systems where queueing and congestion are important constructs. Both finite and infinite queueing systems are examined. Many examples and case studies are utilized to indicate the breadth and depth of the queueing systems and their range of applicability. Blocking of these processes is very important and the book shows how to deal with this problem in an effective way and not only compute the performance measures of throughput, cycle times, and WIP but also to optimize the resources within these systems. The book is aimed at advanced undergraduate, graduate, and professionals and academics interested in network design, queueing performance models and their optimization. It assumes that the audience is fairly sophisticated in their mathematical understanding, although the explanations of the topics within the book are fairly detailed.

Introduction to Queueing Systems with Telecommunication Applications

by László Lakatos László Szeidl Miklós Telek

The book is the extended and revised version of the 1st edition and is composed of two main parts: mathematical background and queueing systems with applications. The mathematical background is a self-containing introduction to the stochastic processes of the later studied queueing systems. It starts with a quick introduction to probability theory and stochastic processes and continues with chapters on Markov chains and regenerative processes. More recent advances of queueing systems are based on phase type distributions, Markov arrival processes and quasy birth death processes, which are introduced in the last chapter of the first part.The second part is devoted to queueing models and their applications. After the introduction of the basic Markovian (from M/M/1 to M/M/1//N) and non-Markovian (M/G/1, G/M/1) queueing systems, a chapter presents the analysis of queues with phase type distributions, Markov arrival processes (from PH/M/1 to MAP/PH/1/K). The next chapter presents the classical queueing network results and the rest of this part is devoted to the application examples. There are queueing models for bandwidth charing with different traffic classes, slotted multiplexers, media access protocols like Aloha and IEEE 802.11b, priority systems and retrial systems.An appendix supplements the technical content with Laplace and z transformation rules, Bessel functions and a list of notations. The book contains examples and exercises throughout and could be used for graduate students in engineering, mathematics and sciences.Reviews of first edition:"The organization of the book is such that queueing models are viewed as special cases of more general stochastic processes, such as birth-death or semi-Markov processes. … this book is a valuable addition to the queuing literature and provides instructors with a viable alternative for a textbook to be used in a one- or two-semester course on queueing models, at the upper undergraduate or beginning graduate levels."Charles Knessl, SIAM Review, Vol. 56 (1), March, 2014

Introduction to Queueing Systems with Telecommunication Applications

by Laszlo Lakatos Miklos Telek Laszlo Szeidl

The book is composed of two main parts: mathematical background and queueing systems with applications. The mathematical background is a self containing introduction to the stochastic processes of the later studies queueing systems. It starts with a quick introduction to probability theory and stochastic processes and continues with chapters on Markov chains and regenerative processes. More recent advances of queueing systems are based on phase type distributions, Markov arrival processes and quasy birth death processes, which are introduced in the last chapter of the first part. The second part is devoted to queueing models and their applications. After the introduction of the basic Markovian (from M/M/1 to M/M/1//N) and non-Markovian (M/G/1, G/M/1) queueing systems, a chapter presents the analysis of queues with phase type distributions, Markov arrival processes (from PH/M/1 to MAP/PH/1/K). The next chapter presents the classical queueing network results and the rest of this part is devoted to the application examples. There are queueing models for bandwidth charing with different traffic classes, slotted multiplexers, ATM switches, media access protocols like Aloha and IEEE 802.11b, priority systems and retrial systems. An appendix supplements the technical content with Laplace and z transformation rules, Bessel functions and a list of notations. The book contains examples and exercises throughout and could be used for graduate students in engineering, mathematics and sciences.

Introduction to Radar Analysis (Advances in Applied Mathematics)

by Bassem R. Mahafza

Introduction to Radar Analysis, Second Edition is a major revision of the popular textbook. It is written within the context of communication theory as well as the theory of signals and noise. By emphasizing principles and fundamentals, the textbook serves as a vital source for students and engineers. Part I bridges the gap between communication, signal analysis, and radar. Topics include modulation techniques and associated Continuous Wave (CW) and pulsed radar systems. Part II is devoted to radar signal processing and pulse compression techniques. Part III presents special topics in radar systems including radar detection, radar clutter, target tracking, phased arrays, and Synthetic Aperture Radar (SAR). Many new exercise are included and the author provides comprehensive easy-to-follow mathematical derivations of all key equations and formulas. The author has worked extensively for the U.S. Army, the U.S. Space and Missile Command, and other military agencies. This is not just a textbook for senior level and graduates students, but a valuable tool for practicing radar engineers. Features Authored by a leading industry radar professional. Comprehensive up-to-date coverage of radar systems analysis issues. Easy to follow mathematical derivations of all equations and formulas Numerous graphical plots and table format outputs. One part of the book is dedicated to radar waveforms and radar signal processing.

An Introduction to Radiation Protection

by Peter Cole Alan Martin Sam Harbison Karen Beach

This highly-readable account of the nature of the hazards presented by ionizing radiation and the methods of protection is an ideal introductory text for those new to the field, and for the non-specialist. The seventh edition continues to cover the technical principles underlying the control of radiation hazards, radiation detection and measurement and the biological effects of radiation, followed by a consideration of industry-specific radiation protection issues. Further specialised topics include risk assessment, waste management and decommissioning, radiological emergencies, relevant legislation and organizational issues and, new to this edition, environmental radiation protection.

Introduction to Radio Engineering

by Nathan Blaunstein Christos Christodoulou Mikhail Sergeev

The book introduces the basic foundations of high mathematics and vector algebra. Then, it explains the basic aspects of classical electrodynamics and electromagnetism. Based on such knowledge readers investigate various radio propagation problems related to guiding structures connecting electronic devices with antenna terminals placed at the different radar systems. It explains the role of antennas in process of transmission of radio signals between the terminals. Finally, it shows the relation between the main operational charactistics of each kind of radar and the corresponding knowledge obtained from the previous chapters.

Introduction to Random Signals, Estimation Theory, and Kalman Filtering

by M. Sami Fadali

This book provides first-year graduate engineering students and practicing engineers with a solid introduction to random signals and estimation. It includes a statistical background that is often omitted in other textbooks but is essential for a clear understanding of estimators and their properties. The book emphasizes applicability rather than mathematical theory. It includes many examples and exercises to demonstrate and learn the theory that makes extensive use of MATLAB and its toolboxes. Although there are several excellent books on random signals and Kalman filtering, this book fulfills the need for a book that is suitable for a single-semester course that covers both random signals and Kalman filters and is used for a two-semester course for students that need remedial background. For students interested in more advanced studies in the area, the book provides a bridge between typical undergraduate engineering education and more advanced graduate-level courses.

Introduction to Real Estate Development and Finance

by Richard M. Levy

This book provides readers with a basic understanding of the principles that underlie real estate development. A brief historical overview and an introduction to basic principles are followed by examples from practice. Case studies focus on how cities change and respond to the economic, technological, social, and political forces that shape urban development in North America. It is important to have a framework for understanding the risks and rewards in real estate investing. In measuring return, consideration must be given to both investment appreciation and the cash flow generated over the life of a project. In addition, metrics are presented that can be useful in assessing the financial feasibility of a real estate development proposal. This book also provides an overview of the forces of supply and demand that gauge the potential market for a new project. In determining the size of “residual demand”, estimates for population growth, family formation, and new development are important. All development projects fall under the auspices of one or several jurisdictions. Though every jurisdiction has different rules and procedures, basic knowledge of the planning process is critical to the success of all development projects regardless of location. Furthermore, all projects have a legal component. Basic issues of land ownership, property rights, property transfer, and land registration are reviewed, all of which need to be considered when a property is sold or purchased. This book also provides a primary on the design and construction process. In constructing a building, a team of experts is first required to design the architectural, structural, and heating, ventilation, and air conditioning (HVAC) systems for a building. An overview is provided of each building system: wood, concrete, and steel. Critical to a successful real estate development, project management principles for the processes of design, bidding, and construction are explored, with close attention given to budgeting, scheduling, and resource management. Essential reading for anyone involved in the development of our built environment, this is a must-read introduction for students and professionals in architecture, urban planning, engineering or real estate seeking an approachable and broad view of real estate development and finance.

An Introduction to Redox Polymers for Energy-Storage Applications

by Ulrich S. Schubert Andreas Winter George R. Newkome

An Introduction to Redox Polymers for Energy-Storage Applications Presents a well-founded introduction to the field or Redox Polymers, with didactical features like summary boxes and a Q&A sections An Introduction to Redox Polymers for Energy-Storage Applications discusses fundamental aspects related to polymer-based batteries, such as types of batteries, their historic development, design and synthesis criteria of the active material, and summarizes the various types of redox polymers and their applications. Each chapter contains learning objectives, summary boxes, and questions to allow for efficient exam preparation. In An Introduction to Redox Polymers for Energy-Storage Applications, readers will find detailed information on: Fundamental aspects of redox-active polymers, along with their historical classification, taking the key applications of the materials into account Energy-storage devices, containing polymers as the electrode active materials, and specific material requirements for the desired applications Classification of redox-active polymers, e.g., according to the nature of the actual redox-active moieties, their backbone structure, or topology Electrical conductivity of conjugated polymers, covering their most prominent representatives (polyaniline, polypyrrole, polythiophene, and polyacetylene) An Introduction to Redox Polymers for Energy-Storage Applications also covers the synthesis and applications of these materials, making it an excellent book for graduates, PhD students, and professionals who are starting in this field.

Introduction to Refractories for Iron- and Steelmaking

by Subir Biswas Debasish Sarkar

This book promotes understanding of the raw material selection, refractory design, tailor-made refractory developments, refractory properties, and methods of application. It provides a complete analysis of modern iron and steel refractories. It describes the daily demands on modern refractories and describes how these needs can be addressed or improved upon to help achieve the cleanest and largest yields of iron and steel. The text contains end-of-chapter summaries to help reinforce difficult concepts. It also includes problems at the end of chapters to confirm the reader's understanding of topics such as hoop stress modeling in steel ladle and vessels, establishment of thermal gradient modeling , refractory corrosion dynamics, calculation of Blast furnace trough dimension based on thermal modeling, to name a few. Led by editors with backgrounds in both academia and industry, this book can be used in college courses, as a reference for industry professionals, and as an introduction to the technology for those making the transition to industry.Stands as a comprehensive introduction to the science and technology of modern steel and iron-making refractories that examines the processes, construction, and potential improvement of refractory performance and sustainability;Serves as a versatile resource appropriate for all levels, from the student to industry novices to professionals;Reinforces difficult-to-grasp concepts with end-of-chapter summaries;Maximizes reader understanding of key topics, such as refractory selection for steel ladle and vessels, and their corrosion dynamics, with real life problems.

Introduction to Refrigeration and Air Conditioning Systems: Theory and Applications (Synthesis Lectures on Mechanical Engineering)

by Allan T. Kirkpatrick

This second edition builds on the foundation established by the previous first edition published in 2017. The first edition covered background information, description, and analysis of four major cooling system technologies - vapor compression cooling, evaporative cooling, absorption cooling, and gas cooling. The second edition has been expanded to include increased coverage of cooling system refrigerants, fluid mechanics, heat transfer, and building cooling loads. With increasing climate change due to the buildup of greenhouse gas emissions in the atmosphere, there has been a worldwide impetus to transition to cooling systems and refrigerants that have a low or even zero global warming potential. The text is written as a tutorial for engineering students and practicing engineers who want to become more familiar with the performance of refrigeration and air conditioning systems. The goals are to familiarize the reader with cooling technology nomenclature and provide insight into how refrigeration and air conditioning systems can be modeled and analyzed. Emphasis is placed on constructing idealized thermodynamic cycles to represent actual physical situations in cooling systems. The book contains numerous practical examples to show how one can calculate the performance of cooling system components. By becoming familiar with the analyses presented in the examples, one can gain a feel for representative values of the various thermal and mechanical parameters that characterize cooling systems.

Introduction to Reliability Engineering

by James E. Breneman Chittaranjan Sahay Elmer E. Lewis

Introduction to Reliability Engineering A complete revision of the classic text on reliability engineering, written by an expanded author team with increased industry perspective Introduction to Reliability Engineering provides a thorough and well-balanced overview of the fundamental aspects of reliability engineering and describes the role of probability and statistical analysis in predicting and evaluating reliability in a range of engineering applications. Covering both foundational theory and real-world practice, this classic textbook helps students of any engineering discipline understand key probability concepts, random variables and their use in reliability, Weibull analysis, system safety analysis, reliability and environmental stress testing, redundancy, failure interactions, and more. Extensively revised to meet the needs of today’s students, the Third Edition fully reflects current industrial practices and provides a wealth of new examples and problems that now require the use of statistical software for both simulation and analysis of data. A brand-new chapter examines Failure Modes and Effects Analysis (FMEA) and the Reliability Testing chapter has been greatly expanded, while new and expanded sections cover topics such as applied probability, probability plotting with software, the Monte Carlo simulation, and reliability and safety risk. Throughout the text, increased emphasis is placed on the Weibull distribution and its use in reliability engineering. Presenting students with an interdisciplinary perspective on reliability engineering, this textbook: Presents a clear and accessible introduction to reliability engineering that assumes no prior background knowledge of statistics and probability Teaches students how to solve problems involving reliability data analysis using software including Minitab and Excel Features new and updated examples, exercises, and problems sets drawn from a variety of engineering fields Includes several useful appendices, worked examples, answers to selected exercises, and a companion website Introduction to Reliability Engineering, Third Edition remains the perfect textbook for both advanced undergraduate and graduate students in all areas of engineering and manufacturing technology.

Introduction To Remote Sensing

by James B. Campbell Randolph H. Wynne

A leading text for undergraduate- and graduate-level courses, this book introduces widely used forms of remote sensing imagery and their applications in plant sciences, hydrology, earth sciences, and land use analysis. The text provides comprehensive coverage of principal topics and serves as a framework for organizing the vast amount of remote sensing information available on the Web. Including case studies and review questions, the book's four sections and 21 chapters are carefully designed as independent units that instructors can select from as needed for their courses. Illustrations include 29 color plates and over 400 black-and-white figures. New to This Edition *Reflects significant technological and methodological advances. *Chapter on aerial photography now emphasizes digital rather than analog systems. *Updated discussions of accuracy assessment, multitemporal change detection, and digital preprocessing. *Links to recommended online videos and tutorials.

Introduction to Remote Sensing

by Arthur P. Cracknell

Introduction to Remote Sensing, Second Edition provides a full and authoritative introduction for scientists who need to know the scope, potential, and limitations of remote sensing. Suitable for students and professionals with some background in the physical sciences, this book comprehensively surveys the basic principles behind remote sensing physics, techniques, and technology. It features updated and expanded material, including greater coverage of applications from across the earth, environmental, atmospheric, and oceanographic sciences. Illustrated with remotely sensed color images from satellites and aircraft, it also outlines data acquisition, interpretation, and analysis.

Introduction to Renewable Energy Conversions

by Sergio C. Capareda

Introduction to Renewable Energy Conversions examines all the major renewable energy conversion technologies with the goal of enabling readers to formulate realistic resource assessments. The text provides step-by-step procedures for assessing renewable energy options and then moves to the design of appropriate renewable energy strategies. The goal is for future engineers to learn the process of making resource estimates through the introduction of more than 140 solved problems and over 165 engineering related equations. More than 120 figures and numerous tables explain each renewable energy conversion type. A solutions manual, PowerPoint slides, and lab exercises are available for instructors. Key Features Covers all major types of renewable energy with comparisons for use in energy systems Builds skills for evaluating energy usage versus environmental hazards and climate change factors Presents and explains the key engineering equations used to design renewable energy systems Uses a practical approach to design and analyze renewable energy conversions Offers a solutions manual, PowerPoint slides, and lab activity plans for instructors

Refine Search

Showing 32,976 through 33,000 of 64,527 results