- Table View
- List View
Laser Diodes and Their Applications to Communications and Information Processing
by Takahiro NumaiIn order to develop excellent photonic devices, we have to fully understand the physics behind operations of photonic devices. This book thoroughly teaches the fundamental physics currently applied to the development of photonics devices such as energy bands of semiconductors, optical transitions, optical waveguides, and semiconductor junctions. The book also reviews the characteristics of laser diodes, optical filters, and optical functional devices, which have been developed based on the above physics. These photonic devices have been demonstrated in system applications, and several experimental results are described.
Laser Doppler Vibrometry: A Multimedia Guide to its Features and Usage
by Paolo Castellini Enrico Primo TomasiniThis book is a continuous learning tool for experienced technical staff facing laser vibrometry technology for the first time. The book covers both theoretical aspects and practical applications of laser Doppler vibrometry, and is accompanied by a multimedia presentation that allows the audience to browse the content and come as close as possible to performing real experiments. After a brief introduction, Chapter 2 presents supporting theory, providing general information on light sources, light scattering and interference for a better understanding of the rest of the book. Chapter 3 examines the theory of laser vibrometers, explaining interferometers from an optical perspective and in terms of the related electronics. It also addresses options like tracking filters and different signal demodulation strategies, since these have a significant impact on the practical use of vibrometers. Chapter 4 explores the configurations that are encountered in today’s instrumentation, with a focus on providing practical suggestions on the use of laser vibrometers. Lastly, Chapter 5 investigates metrology for vibration and shock measurements using laser interferometry, and analyses the uncertainty of laser vibrometers in depth.
Laser Doppler Vibrometry for Non-Contact Diagnostics (Bioanalysis #9)
by Kristian KroschelThis book presents recent outcomes of the collaborative “Tricorder” project, which brings together partners from industry, research institutes and hospitals to deliver an easy contactless alternative for electrocardiograms (ECG).Featuring contributions investigating the possible applications of laser Doppler vibrometry (LDV) signals for the remote measurement of vital parameters of the heart, the book provides insights into the vision and the history of the "Tricorder" project and the basic differences between the vibrocardiograms and electrocardiograms. It also discusses topics such as signal processing, heartbeat measurement techniques, respiration frequency and oxygen saturation determination, with a particular focus on the diagnostic value of the method presented, e.g., diagnosis of atrial fibrillation and estimation of the oxygen saturation in premature infants. Further, the authors review the advantages and drawbacks of the new method and the specific fields of application.This book will appeal to researchers and industry leaders interested in laser remote sensing for medical applications as well as medical professionals curious about new healthcare technologies.
Laser Drilling
by Bekir Sami YilbasThis book introduces laser drilling processes including modelling, quality assessment of drilled holes, and laser drilling applications. It provides insights into the laser drilling process and relation among the drilling parameters pertinent to improved end product quality. This book is written for engineers and scientists working on laser machining, particularly laser drilling.
Laser Electrochemistry of Intermediates
by Victor A. Benderskii Alexander V. BenderskiiLaser photoelectron emission not only allows investigation of interfaces between electrodes and solution, but also provides a method for fast generation of intermediate species in the vicinity of the interface and so permits study of their electrode reactions. Laser Electrochemistry of Intermediates presents the first-ever comprehensive review of this important phenomenon and its electrochemical applications.The book explores how the innovative method of laser electron emission from metal electrodes resolves two fundamental problems inherent in current methods of intermediate species (IS) generation and detection: difficulty generating IS quickly in the vicinity of the electrode surface and low IS surface concentration. In addition, for the first time, quasi-free and solvated electrons, hydrogen atoms, simple organic and inorganic radicals, and ions with anomalous valence are systematically studied. Laser Electrochemistry of Intermediates incorporates a unique, two-pronged analytical approach. First, the authors consider the kinetics and thermodynamics of the processes based on the participation of IS in its one-electron stages, thus allowing the assignment of real physical meaning to the electrochemical measurables. Second, they consider electrode reactions side by side with homogeneous reactions of electron transfer, facilitating understanding of the universal theory of electron transfer reactions in polar media as well as the peculiarities of these reactions occurring in the interface between electrode and solution.
Laser Filamentation
by Andre D. Bandrauk Emmanuel Lorin Jerome V. MoloneyThis book is focused on the nonlinear theoretical and mathematical problems associated with ultrafast intense laser pulse propagation in gases and in particular, in air. With the aim of understanding the physics of filamentation in gases, solids, the atmosphere, and even biological tissue, specialists in nonlinear optics and filamentation from both physics and mathematics attempt to rigorously derive and analyze relevant non-perturbative models. Modern laser technology allows the generation of ultrafast (few cycle) laser pulses, with intensities exceeding the internal electric field in atoms and molecules (E=5x109 V/cm or intensity I = 3. 5 x 1016 Watts/cm2 ). The interaction of such pulses with atoms and molecules leads to new, highly nonlinear nonperturbative regimes, where new physical phenomena, such as High Harmonic Generation (HHG), occur, and from which the shortest (attosecond - the natural time scale of the electron) pulses have been created. One of the major experimental discoveries in this nonlinear nonperturbative regime, Laser Pulse Filamentation, was observed by Mourou and Braun in 1995, as the propagation of pulses over large distances with narrow and intense cones. This observation has led to intensive investigation in physics and applied mathematics of new effects such as self-transformation of these pulses into white light, intensity clamping, and multiple filamentation, as well as to potential applications to wave guide writing, atmospheric remote sensing, lightning guiding, and military long-range weapons. The increasing power of high performance computers and the mathematical modelling and simulation of photonic systems has enabled many new areas of research. With contributions by theorists and mathematicians, supplemented by active experimentalists who are experts in the field of nonlinear laser molecule interaction and propagation, Laser Filamentation sheds new light on scientific and industrial applications of modern lasers.
Laser Forming and Welding Processes
by Shahzada Zaman Shuja Bekir Sami Yilbas Sohail AkhtarThis book introduces model studies and experimental results associated with laser forming and welding such as laser induced bending, welding of sheet metals, and related practical applications. The book provides insight into the physical processes involved with laser forming and welding. The analytical study covers the formulation of laser induced bending while the model study demonstrates the simulation of bending and welding processes using the finite element method. Analytical and numerical solutions for laser forming and welding problems are provided.
Laser Fundamentals
by William T. SilfvastLaser Fundamentals provides a clear and comprehensive introduction to the physical and engineering principles of laser operation and design. Simple explanations, based throughout on key underlying concepts, lead the reader logically from the basics of laser action to advanced topics in laser physics and engineering. Much new material has been added to this second edition, especially in the areas of solid-state lasers, semiconductor lasers, and laser cavities. This 2004 edition contains a new chapter on laser operation above threshold, including extensive discussion of laser amplifiers. The clear explanations, worked examples, and many homework problems will make this book invaluable to undergraduate and first-year graduate students in science and engineering taking courses on lasers. The summaries of key types of lasers, the use of many unique theoretical descriptions, and the extensive bibliography will also make this a valuable reference work for researchers.
Laser Heat-Mode Lithography: Principle and Methods (Springer Series in Materials Science #291)
by Jingsong WeiThis book provides a systematic description and analysis of laser heat-mode lithography, addressing the basic principles, lithography system, manipulation of feature size, grayscale lithography, resist thin films, and pattern transfer, while also presenting typical experimental results and applications. It introduces laser heat-mode lithography, where the resist thin films are essentially an opto-thermal response to the laser beam with changeable wavelength and are not sensitive to laser wavelength. Laser heat-mode lithography techniques greatly simplify production procedures because they require neither a particular light source nor a particular environment; further, there are no pre-baking and post-baking steps required for organic photoresists. The pattern feature size can be either larger or smaller than the laser spot by adjusting the writing strategy. The lithographic feature size can also be arbitrarily tuned from nanoscale to micrometer without changing the laser spot size. Lastly, the line edge roughness can be controlled at a very low value because the etching process is a process of breaking bonds among atoms. The book offers an invaluable reference guide for all advanced undergraduates, graduate students, researchers and engineers working in the fields of nanofabrication, lithography techniques and systems, phase change materials, etc.
Laser Heating of Metals
by A. M. ProkhorovIn order to ensure efficient use of lasers, and for any large-scale implementation, a thorough knowledge of the fundamental laws governing the interaction of radiation with matter is required. Laser Heating of Metals provides a systematic and comprehensive presentation of the fundamental principles underlying the physical and chemical mechanisms governing the interaction of laser radiation with solid targets, and in particular metals in gaseous environments, for a wide range of beam parameters. The authors have been active in the field of interactions between lasers and materials for many years, and this book summarises the results of their work, in particular concerning the action of CO2 lasers on metals. These results are then discussed at some length. Laser Heating of Materials will be of interest to scientists at all levels with an interest in the interaction of radiation with condensed matter, and in particular to those involved in laser cutting and welding etc, and metal-working.
Laser in Manufacturing: Select Papers From Aimtdr 2016 (Wiley-iste Ser.)
by J. Paulo DavimGenerally a laser (light amplification by stimulated emission of radiation) is defined as “a device which uses a quantum mechanical effect, stimulated emission, to generate a coherent beam of light from a lasing medium of controlled purity, size, and shape”. Laser material processing represents a great number of methods, which are rapidly growing in current and different industrial applications as new alternatives to traditional manufacturing processes. Nowadays, the use of lasers in manufacturing is an emerging area with a wide variety of applications, for example, in electronics, molds and dies, and biomedical applications. The purpose of this book is to present a collection of examples illustrating the state of the art and research developments to lasers in manufacturing, covering laser rapid manufacturing, lasers in metal forming applications, laser forming of metal foams, mathematical modeling of laser drilling, thermal stress analysis, modeling and simulation of laser welding, and the use of lasers in surface engineering. This book can be used as a research book for a final undergraduate engineering course or as a subject on lasers in manufacturing at the postgraduate level. Also, this book can serve as a useful reference for academics, laser researchers, mechanical, manufacturing, materials or physics engineers, or professionals in any related modern manufacturing technology. Contents 1. Laser Rapid Manufacturing: Technology, Applications, Modeling and Future Prospects, Christ P. Paul, Pankaj Bhargava, Atul Kumar, Ayukt K. Pathak and Lalit M. Kukreja. 2. Lasers in Metal Forming Applications, Stephen A. Akinlabi, Mukul Shukla, Esther T. Akinlabi and Tshilidzi Marwala. 3. Laser Forming of Metal Foams, Fabrizio Quadrini, Denise Bellisario, Erica A. Squeo and Loredana Santo. 4. Mathematical Modeling of Laser Drilling, Maturose Suchatawat and Mohammad Sheikh. 5. Laser Cutting a Small Diameter Hole: Thermal Stress Analysis, Bekir S. Yilbas, Syed S. Akhtar and Omer Keles. 6. Modeling and Simulation of Laser Welding, Karuppudaiyar R. Balasabramanian, Krishnasamy Sankaranarayanasamy and Gangusami N. Buvanashekaran. 7. Lasers in Surface Engineering, Alberto H. Garrido, Rubén González, Modesto Cadenas, Chin-Pei Wang and Farshid Sadeghi.
Laser-Induced Breakdown Spectroscopy in Biological, Forensic and Materials Sciences
by Gábor GalbácsThis book offers a comprehensive overview of recent advances in the area of laser-induced breakdown spectroscopy (LIBS), focusing on its application to biological, forensic and materials sciences. LIBS, which was previously mainly used by physicists, chemists and in the industry, has now become a very useful tool with great potential in these other fields as well. LIBS has a unique set of characteristics including minimal destructiveness, remote sensing capabilities, potential portability, extremely high information content, trace analytical sensitivity and high throughput. With its content divided into two main parts, this book provides not only an introduction to the analytical capabilities and methodology, but also an overview of the results of recent applications in the above fields. The application-oriented, multidisciplinary approach of this work is also reflected in the diversity of the expert contributors. Given its breadth, this book will appeal to students, researchers and professionals interested in solving analytical/diagnostic/material characterization tasks with the application of LIBS.
Laser-Induced Damage in Optical Materials
by Detlev RistauDedicated to users and developers of high-powered systems, Laser-Induced Damage in Optical Materials focuses on the research field of laser-induced damage and explores the significant and steady growth of applications for high-power lasers in the academic, industrial, and military arenas. Written by renowned experts in the field, this book concentr
Laser-Induced Damage of Optical Materials (Series In Optics And Optoelectronics Ser.)
by Roger M. WoodThe laser power handling capacities of optical systems are determined by the physical properties of their component materials. At low intensity levels these factors are not important, but an understanding of damage mechanisms is fundamental to good design of laser products operating at high power. Laser Induced Damage of Optical Materials presents
Laser Inter-Satellite Links Technology
by Jianjun Zhang Jing LiLASER INTER-SATELLITE LINKS TECHNOLOGY State of the art resource covering key technologies and related theories of inter-satellite links Laser Inter-Satellite Links Technology explores satellite networking as a growing topic in the field of communication technology, introducing the definition, types, and working frequency bands of inter-satellite links, discussing the number of orbital elements of the spacecraft motion state under two-body motion and their conversion relationship, and establishing the basic demand model for inter-satellite link network, chain topology model, and transmission protocol model. The book focuses on the analysis and introduction of the principles and error sources of microwave and laser inter-satellite ranging, including the basic composition, workflow, and constraints of the laser inter-satellite link, and related design principles of the inter-satellite laser transmitter and receivers. Later chapters also discuss theories and methods of acquisition, alignment, and tracking, the impact of alignment errors on performance, and inter-satellite link modulation and its implementation. Specific sample topics covered in Laser Inter-Satellite Links Technology include: Pulse position modulation (PPM), differential pulse position modulation (DPPM), digital pulse interval modulation (DPIM), and double-head pulse interval modulation (DH-PIM) Basic demand model of inter-satellite link network application, including basic configuration of constellations and inter-satellite transmission networks Inter-satellite ranging accuracy, principles of microwave inter-satellite ranging, and analysis of microwave ranging error sources Effect of tracking error on the beam distribution at the receiving end and influence of tracking and pointing error on communication error rate Laser Inter-Satellite Links Technology serves a completely comprehensive resource on the subject and is a must-have reference for experts and scholars in aerospace, along with graduates and senior undergraduates in related programs of study.
Laser Interaction with Biological Material
by Kirill KulikovThis book covers the principles of laser interaction with biological cells and tissues of varying degrees of organization. The problems of biomedical diagnostics are considered. Scattering of laser irradiation of blood cells is modeled for biological structures (dermis, epidermis, vascular plexus). An analytic theory is provided which is based on solving the wave equation for the electromagnetic field. It allows the accurate analysis of interference effects arising from the partial superposition of scattered waves. Treated topics of mathematical modeling are: optical characterization of biological tissue with large-scale and small-scale inhomogeneities in the layers, heating blood vessel under laser irradiation incident on the outer surface of the skin and thermo-chemical denaturation of biological structures at the example of human skin.
Laser Interaction with Heterogeneous Biological Tissue: Mathematical Modeling (Biological and Medical Physics, Biomedical Engineering)
by Kirill Kulikov Tatiana KoshlanThis book introduces readers to the principles of laser interaction with biological cells and tissues with varying degrees of organization. In addition to considering the problems of biomedical cell diagnostics, and modeling the scattering of laser irradiation of blood cells for biological structures (dermis, epidermis, vascular plexus), it presents an analytic theory based on solving the wave equation for the electromagnetic field. It discusses a range of mathematical modeling topics, including optical characterization of biological tissue with large-scale and small-scale inhomogeneities in the layers; heating blood vessels using laser irradiation on the outer surface of the skin; and thermo-chemical denaturation of biological structures based on the example of human skin. In this second edition, a new electrodynamic model of the interaction of laser radiation with blood cells is presented for the structure of cells and the in vitro prediction of optical properties. The approach developed makes it possible to determine changes in cell size as well as modifications in their internal structures, such as transformation and polymorphism nucleus scattering, which is of interest for cytological studies. The new model is subsequently used to calculate the size distribution function of irregular-shape particles with a variety of forms and structures, which allows a cytological analysis of the observed deviations from normal cells.
The Laser Inventor
by Theodore H. MaimanIn these engaging memoirs of a maverick, Theodore H. Maiman describes the life events leading to his invention of the laser in 1960. Maiman succeeded using his expertise in physics and engineering along with an ingenious and elegant design not anticipated by others. His pink ruby laser produced mankind's first-ever coherent light and has provided transformational technology for commerce, industry, telecom, the Internet, medicine, and all the sciences. Maiman also chronicles the resistance from his employer and the ongoing intrigue by competing researchers in industry and academia seeking to diminish his contribution in inventing the first laser. This work will appeal to a wide readership, from physicists and engineers through science enthusiasts to general readers. The volume includes extensive photos and documentary materials related to Maiman's life and accomplishments never before published. "No one beat Maiman to the laser. How important is the laser? How important are all lasers? That is how important we have to regard Maiman's contribution. He and the laser changed all of our lives, everyone's!" Dr. Nick Holonyak, Jr. , Professor of Electrical and Computer Engineering and Physics, University of Illinois at Champaigne-Urbana, and inventor of the light-emitting diode (LED) and co-inventor of the transistor laser "More than five decades later, we can safely conclude that Theodore Maiman's groundbreaking discovery changed the world. Our modern life just as scientific research would be quite different without the laser. " Dr. Ferenc Krausz, Director, Max Planck Institute for Quantum Optics, Garching, Germany, and Professor of Physics, Ludwig Maximilian University, Munich, and pioneer in attosecond lasers and attophysics "Maiman had the stroke of genius needed to take a different approach [from his competitors]. The sheer elegance and simplicity of his design belies the intellectual achievement it represents. If his invention seems obvious to some today, it was far from obvious in 1960. " Jeff Hecht, authoritative science writer on the historical development of the laser, author of books on lasers and fiber optics
Laser Machining of Advanced Materials
by null Narendra B Dahotre null Anoop SamantAdvanced materials are becoming increasingly important as substitutes for traditional materials and as facilitators for new and unique products. They have had a considerable impact on the development of a wide range of strategic technologies. Structural ceramics, biomaterials, composites and intermetallics fall under this category of advanced mater
The Laser Manufacturing Process: Fundamentals of Process and Applications
by Anooshiravan Farshidianfar Seyedeh Fatemeh Nabavi Mohammad Hossein FarshidianfarThe Laser Manufacturing Process is a comprehensive guide to industrial laser processes, offering insights into their fundamentals, applications across industries, production specifics, and characteristics, including mechanical, metallurgical, and geometrical aspects, as well as potential defects.The book also investigates how industrial laser processes are developed and the diverse attributes of the resulting objects, emphasizing their significance in industrial settings. Here, “objects” refer to the tangible outcomes of laser manufacturing, encompassing a wide array of products and components created through processes like cutting, welding, and additive manufacturing. These objects exhibit distinct mechanical properties, metallurgical characteristics, and geometrical precision, all of which are crucial considerations in their utility and performance within industrial environments.This book functions as a concise reference manual catering to the needs of both students and professionals who require knowledge related to laser manufacturing processes, such as laser cutting, laser welding, and laser additive manufacturing processes.
Laser Material Processing
by Jyotirmoy Mazumder William M. Steen Kenneth G. WatkinsThe informal style of Laser Material Processing (4th Edition) will guide you smoothly from the basics of laser physics to the detailed treatment of all the major materials processing techniques for which lasers are now essential. * Helps you to understand how the laser works and to decide which laser is best for your purposes. * New chapters on laser physics, drilling, micro- and nanomanufacturing and biomedical laser processing reflect the changes in the field since the last edition, updating and completing the range of practical knowledge about the processes possible with lasers already familiar to established users of this well-known text. * Provides a firm grounding in the safety aspects of laser use. * Now with end-of-chapter exercises to help students assimilate information as they learn. * The authors' lively presentation is supported by a number of original cartoons by Patrick Wright and Noel Ford which will bring a smile to your face and ease the learning process.
Laser Materials Processing (Manufacturing Engineering and Materials Processing)
by Leonamrdig LioreThis volume discusses the basic principles necessary to understand lasers, explains laser interactions with materials, and surveys the wide variety of industrial applications of the major laser types, covering in detail the operating mechanisms of carbon dioxide, Nd:YAG, and excimer lasers. It presents lasers as manufacturing tools rather than laboratory devices.
Laser-Matter Interaction for Radiation and Energy
by Hitendra K. MalikThe interaction of high-power lasers with matter can generate Terahertz radiations that efficiently contribute to THz Time-Domain Spectroscopy and also would replace X-rays in medical and security applications. When a short intense laser pulse ionizes a gas, it may produce new frequencies even in VUV to XUV domain. The duration of XUV pulses can be confined down to the isolated attosecond pulse levels, required to study the electronic re-arrangement and ultrafast processes. Another important aspect of laser-matter interaction is the laser thermonuclear fusion control where accelerated particles also find an efficient use. This book provides comprehensive coverage of the most essential topics, including Electromagnetic waves and lasers THz radiation using semiconducting materials / nanostructures / gases / plasmas Surface plasmon resonance THz radiation detection Particle acceleration technologies X-ray lasers High harmonics and attosecond lasers Laser based techniques of thermonuclear fusion Controlled fusion devices including NIF and ITER The book comprises of 11 chapters and every chapter starts with a lucid introduction to the main topic. Then sub-topics are sedulously discussed keeping in mind their basics, methodology, state-of-the-art and future perspective that will prove to be salutary for readers. High quality solved examples are appended to the chapters for their deep understanding and relevant applications. In view of the nature of the topics and their level of discussion, this book is expected to have pre-eminent potential for researchers along with postgraduate and undergraduate students all over the world.
Laser Measurement Technology
by Axel Donges Reinhard NollLaser measurement technology has evolved in the last years in a versatile and reflationary way. Today, its methods are indispensable for research and development activities as well as for production technology. Every physicist and engineer should therefore gain a working knowledge of laser measurement technology. This book closes the gap of existing textbooks. It introduces in a comprehensible presentation laser measurement technology in all its aspects. Numerous figures, graphs and tables allow for a fast access into the matter. In the first part of the book the important physical and optical basics are described being necessary to understand laser measurement technology. In the second part technically significant measuring methods are explained and application examples are presented. Target groups of this textbook are students of natural and engineering sciences as well as working physicists and engineers, who are interested to make themselves familiar with laser measurement technology and its fascinating potentials.
Laser Metallic Additive Manufacturing Technologies by Thermal-Mechanical Interaction
by Jinzhong Lu Haifei Lu Kaiyu LuoThis book introduces the laser hybrid additive manufacturing technology (LHAM) with alternately thermal and mechanical effects for the high-performance manufacturing of key components. Metal additive manufacturing (AM) technologies have made considerable progress in the basic theoretical field since its invention in the 1970s. However, there are still some difficulties in the coordinated control of the structure and performance, containing the challenges of “structure control” against deformation and cracking of the formed metallic components incurred by internal stress and “performance control” against poor fatigue property of formed metallic components incurred by metallurgical defects. This book surveys the most relevant papers about the influence of laser shock wave on the microstructural evolution, residual stress, metallurgical defect, and mechanical properties that have become the foundation to elucidate the principles and effects of LHAM technology. This book is separated into four parts to fully present the LHAM technology. The first part reviews the background of LHAM technology. The second part explains the theoretical basis of the thermal effects of laser additive manufacturing (LAM) and mechanical effects of laser shock peening (LSP). The other two parts specifically describe the microstructural evolution, residual stress, metallurgical defect, and mechanical properties using LHAM technology. This book benefits the audience in the field of mechanical engineering and materials sciences, since LHAM technology is suitable for the manufacturing and applications of the key components of aero-engine. The analysis in the book helps the audience deeply understand the mechanism of LHAM technology. The authors’ unique thinking about LHAM technology also runs through the book, which may enlighten the audience to further develop LHAM technology.