- Table View
- List View
Laser-MicroEDM Based Hybrid Micromachining: Microdrilling and Micromilliling (SpringerBriefs in Applied Sciences and Technology)
by Tanveer Saleh Mir Akmam Noor Rashid Wan Ahmad Bin Wan Azhar Wazed Ibne NoorThis book covers the various aspects of laser micromachining (LBMM) and micro electro-discharge machining (uEDM) sequential hybrid process. LBMM-mEDM-based hybrid micromachining is a growing interest among researchers because of its unique features to harness the advantages of the two primary methods. This book guides the readers to implement this LBMM-mEDM-based hybrid process for the micromachining process efficiently to achieve a higher production rate with improved machining quality. It will provide the basic understanding about the LBMM-mEDM process, how the primary process's parameters affect the overall performance of the hybrid machining's outcome, how the hybrid process can be mathematically modelled to describe various observed phenomena of the said micromachining method. This book caters to researchers and industrial practitioners who are interested in precision and high throughput machining.
Laser Modeling: A Numerical Approach with Algebra and Calculus
by Mark Steven CseleOffering a fresh take on laser engineering, Laser Modeling: A Numerical Approach with Algebra and Calculus presents algebraic models and traditional calculus-based methods in tandem to make concepts easier to digest and apply in the real world. Each technique is introduced alongside a practical, solved example based on a commercial laser. Assuming some knowledge of the nature of light, emission of radiation, and basic atomic physics, the text: Explains how to formulate an accurate gain threshold equation as well as determine small-signal gain Discusses gain saturation and introduces a novel pass-by-pass model for rapid implementation of "what if?" scenarios Outlines the calculus-based Rigrod approach in a simplified manner to aid in comprehension Considers thermal effects on solid-state lasers and other lasers with new and efficient quasi-three-level materials Demonstrates how the convolution method is used to predict the effect of temperature drift on a DPSS system Describes the technique and technology of Q-switching and provides a simple model for predicting output power Addresses non-linear optics and supplies a simple model for calculating optimal crystal length Examines common laser systems, answering basic design questions and summarizing parameters Includes downloadable Microsoft® Excel™ spreadsheets, allowing models to be customized for specific lasers Don’t let the mathematical rigor of solutions get in the way of understanding the concepts. Laser Modeling: A Numerical Approach with Algebra and Calculus covers laser theory in an accessible way that can be applied immediately, and numerically, to real laser systems.
Laser Optoelectronic Oscillators (Springer Series in Optical Sciences #232)
by Alexander A. Bortsov Yuri B. Il’in Sergey M. SmolskiyThis book is devoted to the theoretical and experimental investigation of the optoelectronic oscillator (OEO) with direct and external modulation of laser emission. Such devices, sources of precision radio frequency oscillations using laser excitation, are novel and technologically relevant, with manifold possible applications. The book includes a review of the present state of the theory and generation techniques in microwave and mm-wave ranges for traditional and optoelectronic oscillators, description of OEO construction and operation principles, theoretical oscillation analysis and mathematical description of the relevant semi-classical laser physics, and investigation of the power spectral density of noises. Technical features and advantages of OEOs with external and direct modulation of laser emission are discussed together with functional diagrams. The characteristics of OEOs are compared with other traditional RF oscillators, such as quartz, surface acoustic waves, and oscillators with electromagnetic wave cavities. Special attention is paid to Q-factors and phase noises of RF carriers at small offsets. The authors discuss the technical characteristics of modern optoelectronic methods for precision RF oscillation formation, such as commercial large-dimension and compact quantum frequency standards with optical pumping on cesium and rubidium cells. This book is aimed at scientists and engineers in academia and industry who work with sources of microwave and mm-wave signals.
Laser Physics
by Marc EichhornThis textbook originates from a lecture course in laser physics at the Karlsruhe School of Optics and Photonics at the Karlsruhe Institute of Technology (KIT). A main goal in the conception of this textbook was to describe the fundamentals of lasers in a uniform and especially lab-oriented notation and formulation as well as many currently well-known laser types, becoming more and more important in the future. It closes a gap between the measureable spectroscopic quantities and the whole theoretical description and modeling. This textbook contains not only the fundamentals and the context of laser physics in a mathematical and methodical approach important for university-level studies. It allows simultaneously, owing to its conception and its modern notation, to directly implement and use the learned matter in the practical lab work. It is presented in a format suitable for everybody who wants not only to understand the fundamentals of lasers but also use modern lasers or even develop and make laser setups. This book tries to limit prerequisite knowledge and fundamental understanding to a minimum and is intended for students in physics, chemistry and mathematics after a bachelor degree, with the intention to create as much joy and interest as seen among the participants of the corresponding lectures. This university textbook describes in its first three chapters the fundamentals of lasers: light-matter interaction, the amplifying laser medium and the laser resonator. In the fourth chapter, pulse generation and related techniques are presented. The fifth chapter gives a closing overview on different laser types gaining importance currently and in the future. It also contains a set of examples on which the theory learned in the first four chapters is applied and extended.
Laser Physics and Spectroscopy
by Pradip Narayan GhoshIn this book emphasis is laid on laser including its operation, different types, properties like coherence and monochromaticity, beam propagation, theoretical treatment of atom‐field interaction, semi‐classical laser theory, non‐linear effects, quantum properties, photon concept and coherent states etc. Please note: Taylor & Francis does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka.
Laser Physics and Technology
by Pradeep Kumar Gupta Rajeev KhareThe book, 'Laser Physics and Technology', addresses fundamentals of laser physics, representative laser systems and techniques, and some important applications of lasers. The present volume is a collection of articles based on some of the lectures delivered at the School on 'Laser Physics and Technology' organized at Raja Ramanna Centre for Advanced Technology during March, 12-30, 2012. The objective of the School was to provide an in-depth knowledge of the important aspects of laser physics and technology to doctoral students and young researchers and motivate them for further work in this area. In keeping with this objective, the fourteen chapters, written by leading Indian experts, based on the lectures delivered by them at the School, provide along with class room type coverage of the fundamentals of the field, a brief review of the current status of the field. The book will be useful for doctoral students and young scientists who are embarking on a research in this area as well as to professionals who would be interested in knowing the current state of the field particularly in Indian context.
Laser-Plasma Interactions (Scottish Graduate Series)
by D. A. Jaroszynski R. Bingham R. A. CairnsA Solid Compendium of Advanced Diagnostic and Simulation ToolsExploring the most exciting and topical areas in this field, Laser-Plasma Interactions focuses on the interaction of intense laser radiation with plasma. After discussing the basic theory of the interaction of intense electromagnetic radiation fields with matter, the book covers three ap
Laser-Plasma Interactions 4 (Scottish Graduate Ser. #35)
by M. B. HooperLaser-Plasma Interactions 4 is the fourth book in a series devoted to the study of laser-plasma interactions. Subjects covered include laser light propagation, instabilities, compression and hydrodynamics, spectroscopy, diagnostics, computer code, dense plasmas, high-power lasers, X-UV sources and lasers, beat waves, and transport processes.
Laser-Plasma Interactions and Applications
by David Neely Paul Mckenna Dino Jaroszynski Robert BinghamLaser-Plasma Interactions and Applications covers the fundamental and applied aspects of high power laser-plasma physics. With an internationally renowned team of authors, the book broadens the knowledge of young researchers working in high power laser-plasma science by providing them with a thorough pedagogical grounding in the interaction of laser radiation with matter, laser-plasma accelerators, and inertial confinement fusion. The text is organised such that the theoretical foundations of the subject are discussed first, in Part I. In Part II, topics in the area of high energy density physics are covered. Parts III and IV deal with the applications to inertial confinement fusion and as a driver of particle and radiation sources, respectively. Finally, Part V describes the principle diagnostic, targetry, and computational approaches used in the field. This book is designed to give students a thorough foundation in the fundamental physics of laser-plasma interactions. It will also provide readers with knowledge of the latest research trends and elucidate future exciting challenges in laser-plasma science.
Laser Plasma Theory and Simulation (Laser Science And Technology Ser.)
by Hector A. BaldisThis book covers recent developments in laser plasma physics such as absorption, instability, energy transport and radiation from the standpoint of theory and simulation for plasma corona, showing how the elements for the high density compression depend on the interaction physics and heat transport.
Laser Powder Bed Fusion of Additive Manufacturing Technology (Additive Manufacturing Technology)
by Di Wang Yongqiang Yang Yang Liu Yuchao Bai Chaolin TanThis book systematically introduces the powder bed laser melting technology and its application and summarizes the author's team's experience in scientific research, engineering development, and data accumulation in recent 15 years. It includes in-depth theoretical analysis and a lot of engineering experience in equipment debugging, process development, and material testing. The book takes the powder bed laser melting technology as the object and divides the content into 15 chapters. It is used as technical learning materials for researchers and engineering development personnel engaged in metal 3D printing.
Laser Precision Microprocessing of Materials
by M. A. Kazaryan A. G. Grigor'Yants N. A. LyabinThis reference focuses on the current state of fundamental research and industrial achievements in the field of precision laser processing of a wide range of metal, semiconductor and dielectric materials. The possibilities of microprocessing by pulsed nanosecond laser radiation and copper vapor laser systems are analyzed. Design and operation principles, ways to increase their efficiency and reliability, and a series of modern automated technological installations are described. The work will be of interest to specialists, engineers, students and graduate students working and studying in the field of laser technology and optics, laser and information technology.
Laser Printing of Functional Materials: 3D Microfabrication, Electronics and Biomedicine
by Alberto Piqué Pere SerraThe first book on this hot topic includes such major research areas as printed electronics, sensors, biomaterials and 3D cell printing. Well-structured and with a strong focus on applications, the text is divided in three sections with the first describing the fundamentals of laser transfer. The second provides an overview of the wide variety of materials that can be used for laser transfer processing, while the final section comprehensively discusses a number of practical uses, including printing of electronic materials, printing of 3D structures as well as large-area, high-throughput applications. The whole is rounded off by a look at the future for laser printed materials. Invaluable reading for a broad audience ranging from material developers to mechanical engineers, from academic researchers to industrial developers and for those interested in the development of micro-scale additive manufacturing techniques.
Laser Processing and Chemistry
by Dieter BäuerleLaser Processing and Chemistry gives an overview of the fundamentals and applications of laser-matter interactions, in particular with regard to laser material processing. Special attention is given to laser-induced physical and chemical processes at gas-solid, liquid-solid, and solid-solid interfaces. Starting with the background physics, the book proceeds to examine applications of laser techniques in micro-machining, and the patterning, coating, and modification of material surfaces. This fourth edition has been revised and enlarged to cover new topics such as 3D microfabrication, advances in nanotechnology, ultrafast laser technology and laser chemical processing (LCP). Graduate students, physicists, chemists, engineers, and manufacturers alike will find this book an invaluable reference work on laser processing.
Laser Pulse Heating of Surfaces and Thermal Stress Analysis
by Bekir S. Yilbas Hussain M. Al-Qahtani Nasser Al-Aqeeli Ahmad Y. Al-DweikThis book introduces laser pulse heating and thermal stress analysis in materials surface. Analytical temperature treatments and stress developed in the surface region are also explored. The book will help the reader analyze the laser induced stress in the irradiated region and presents solutions for the stress field. Detailed thermal stress analysis in different laser pulse heating situations and different boundary conditions are also presented. Written for surface engineers.
Laser Radar
by Division on Engineering and Physical Sciences Committee on Review of Advancements in Active Electro-Optical Systems to Avoid Technological Surprise Adverse to U.S. National Security National Research CouncilIn today's world, the range of technologies with the potential to threaten the security of U.S. military forces is extremely broad. These include developments in explosive materials, sensors, control systems, robotics, satellite systems, and computing power, to name just a few. Such technologies have not only enhanced the capabilities of U.S. military forces, but also offer enhanced offensive capabilities to potential adversaries - either directly through the development of more sophisticated weapons, or more indirectly through opportunities for interrupting the function of defensive U.S. military systems. Passive and active electro-optical (EO) sensing technologies are prime examples. Laser Radar considers the potential of active EO technologies to create surprise; i.e., systems that use a source of visible or infrared light to interrogate a target in combination with sensitive detectors and processors to analyze the returned light. The addition of an interrogating light source to the system adds rich new phenomenologies that enable new capabilities to be explored. This report evaluates the fundamental, physical limits to active EO sensor technologies with potential military utility; identifies key technologies that may help overcome the impediments within a 5-10 year timeframe; considers the pros and cons of implementing each existing or emerging technology; and evaluates the potential uses of active EO sensing technologies, including 3D mapping and multi-discriminate laser radar technologies.
Laser Refractography
by I. L. Raskovskaya B. S. Rinkevichyus O. A. EvtikhievaThis book describes the basic principles of laser refractography, a flexible new diagnostic tool for measuring optically inhomogeneous media and flows. Laser refractography is based on digital imaging and computer processing of structured laser beam refraction (SLR) in inhomogeneous transparent media. Laser refractograms provide both qualitative and quantitative measurements and can be used for the study of fast and transient processes. In this book, the theoretical basis of refractography is explored in some detail, and experimental setups are described for measurement of transparent media using either 2D (passed radiation) or 3D (scattered radiation) refractograms. Specific examples and applications are discussed, including visualization of the boundary layer near a hot or cold metallic ball in water, and observation of edge effects and micro layers in liquids and gases. As the first book to describe this new and exciting technique, this monograph has broad cross-disciplinary appeal and will be of interest to students and researchers who need to characterize complex fluid behavior.
Laser Remote Sensing
by Takashi Fujii Tetsuo FukuchiInformation on recent progress in laser remote sensor (LIDAR) technology can be found scattered throughout numerous journal articles and conference proceedings, but until now there has been no work that summarizes recent advancements and achievements in the field in a detailed format.Laser Remote Sensing provides an up-to-date, comprehensiv
Laser Resonators and the Beam Divergence Problem
by Yurii A. Anan'evProfessor Yurii A. Anan'ev has a long-standing international reputation for his publications on optical beams and resonators. Now many of his contributions will be readily available for the first time in a book. The generation of maximum power, minimum divergence beams from laser resonators is probably the most important topic in quantum electronics and optics today. The only book of its kind, Laser Resonators and the Beam Divergence Problem covers not only the theory, but also the applications of resonators to real systems as opposed to idealized models. Each rigorous examination of an optical configuration is accompanied by a detailed discussion of its associated applications and of the considerations for the user in practical work. The book contains a wealth of information on the developments in resonator technology, including much material previously unavailable outside the Soviet Union. It is an essential reference source to every researcher in laser science and technology.
Laser Safety
by Roy Henderson Karl SchulmeisterCovering both underlying theory and practical applications, Laser Safety provides a unique and readily-understandable review of current laser safety. This resource explains in detail the biological effects of laser radiation, particularly on the eye, and the provisions and requirements of the international laser safety standard IEC 60825-1, includi
Laser Safety: Tools and Training, Second Edition (Optical Science and Engineering)
by Barat KenNew chapters and updates highlight the second edition of Laser Safety: Tools and Training. This text provides background information relating to lasers and laser safety, and examines the components of laser work and laser safety from a different perspective. Written by a working laser safety officer, the book considers ways to keep users, as well as those around them, safe. The author encourages readers to think beyond protective eyewear. As it relates to safety, he determines that if eyewear is required, then the laser system is not ideal. This book factors in optics, the vibration elements of the optical table, the power meter, and user training, elements that are not commonly considered in the context of laser safety. It presents ways for users to evaluate the hazards of any laser procedure and ensure that they are following documented laser safety standards. The material serves as a fundamental means or road map for laser users seeking to utilize the safest system possible. What’s New in the Second Edition: The second edition provides an inclusion of the Z136.8 Research Laser Standard, and offers updates and an explanation of eye exposure limits (MPE), presents new cases studies, and presents practical example images. It includes coverage of, laser lab design lessons, addresses user facility challenges and laser disposal. Presents case studies of real accidents, preventive measures, and templates for documenting potential laser risks and attendant safety measures Reviews factors often overlooked when one is setting up a laser lab Demonstrates how to investigate a laser incident This text which includes fundamental laser and laser safety information, as well as critical laser use information, is appropriate for both the novice and the seasoned professional.
Laser Safety Management (Optical Science and Engineering)
by Ken BaratAn effective laser safety program can mean big savings in time, money, effort, and most importantly, human well-being. It can improve the quality of your research program, your organization's reputation, and ultimately, improve your bottom line. Based on the extensive experience of active Laser Safety Officer Kenneth Barat, Laser Safety Management provides practical tools for successfully implementing a laser safety program in any environment. The book defines the three elements of laser safety: users, the laser safety officer, and incidental personnel. It covers the types of laser injuries, standard operating procedures to ensure safety, tips and tools to avoid pitfalls, training, control measures, and personal protection equipment. The author explores the laser safety officer position and delineates the required elements of effective SOPs. He also discusses non-beam hazards, includes practical control examples and sample forms, and covers U.S. and European regulations and standards. Taking a pedagogical approach, the book covers not only how to avoid accidents, but how to investigate them if they do occur. It includes a sample safety program designed to evaluate your current safety plan and act as a roadmap for where you need to be and how to get there. Filled with common sense solutions for laser safety issues, the book makes setting up a safety program practically painless.
Laser Scanning: An Emerging Technology in Structural Engineering (ISPRS Book Series #14)
by Belén Riveiro Roderik LindenberghThis book provides an overview on the evolution of laser scanning technology and its noticeable impact in the structural engineering domain. It provides an up-to-date synthesis of the state-of-the-art of the technology for the reverse engineering of built constructions, including terrestrial, mobile, and different portable solutions, for laser scanning. Data processing of large point clouds has experienced an important advance in the last years, and thus, an intense activity in the development of automated data processing algorithms has been noticed. Thus, this book aims to provide an overview of state-of-the-art algorithms, different best practices and most recent processing tools in connection to particular applications. Readers will find this a comprehensive book, that updates the practice of laser scanning for researchers and professionals not only from the geomatic domain, but also other fields such as structural and construction engineering. A set of successful applications to structural engineering are illustrated, including also synergies with other technologies, that can inspire professionals to adopt laser scanning in their day-to-day activity. This cutting-edge edited volume will be a valuable resource for students, researchers and professional engineers with an interest in laser scanning and its applications in the structural engineering domain.
Laser Scanning Systems in Highway and Safety Assessment: Analysis Of Highway Geometry Form Lidar (Advances in Science, Technology & Innovation)
by Biswajeet Pradhan Maher Ibrahim SameenThis book aims to promote the core understanding of a proper modelling of road traffic accidents by deep learning methods using traffic information and road geometry delineated from laser scanning data. The first two chapters of the book introduce the reader to laser scanning technology with creative explanation and graphical illustrations, review and recent methods of extracting geometric road parameters. The next three chapters present different machine learning and statistical techniques applied to extract road geometry information from laser scanning data. Chapters 6 and 7 present methods for modelling roadside features and automatic road geometry identification in vector data. After that, this book goes on reviewing methods used for road traffic accident modelling including accident frequency and injury severity of the traffic accident (Chapter 8). Then, the next chapter explores the details of neural networks and their performance in predicting the traffic accidents along with a comparison with common data mining models. Chapter 10 presents a novel hybrid model combining extreme gradient boosting and deep neural networks for predicting injury severity of road traffic accidents. This chapter is followed by deep learning applications in modelling accident data using feed-forward, convolutional, recurrent neural network models (Chapter 11). The final chapter (Chapter 12) presents a procedure for modelling traffic accident with little data based on the concept of transfer learning. This book aims to help graduate students, professionals, decision makers, and road planners in developing better traffic accident prediction models using advanced neural networks.
Laser Shock Peening: Fundamentals and Advances
by Shikun Zou Junfeng Wu Ziwei Cao Zhigang CheThis book highlights the fundamentals and latest progresses in the research and applications of laser shock peening (LSP). As a novel technology for surface treatment, LSP greatly improves the resistance of metallic materials to fatigue and corrosion. The book presents the mechanisms, techniques, and applications of LSP in a systematic way. It discusses a series of new progresses in fatigue performance improvement of metal parts with LSP. It also introduces lasers, equipment, and techniques of newly developed industry LSP, with a detailed description of the novel LSP blisk. The book demonstrates in details numerical analysis and simulation techniques and illustrates process stability control, quality control, and analysis determination techniques. It is a valuable reference for scientists, engineers, and students in the fields of laser science, materials science, astronautics, and aeronautics who seek to understand, develop, and optimize LSP processes.