- Table View
- List View
Laser Additive Manufacturing of High-Performance Materials
by Dongdong GuThis book entitled "Laser Additive Manufacturing of High-Performance Materials" covers the specific aspects of laser additive manufacturing of high-performance new materials components based on an unconventional materials incremental manufacturing philosophy, in terms of materials design and preparation, process control and optimization and theories of physical and chemical metallurgy. This book describes the capabilities and characteristics of the development of new metallic materials components by laser additive manufacturing process, including nanostructured materials, in situ composite materials, particle reinforced metal matrix composites, etc. The topics presented in this book, similar as laser additive manufacturing technology itself, show a significant interdisciplinary feature, integrating laser technology, materials science, metallurgical engineering and mechanical engineering. This is a book for researchers, students, practicing engineers and manufacturing industry professionals interested in laser additive manufacturing and laser materials processing. Dongdong Gu is a Professor at College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics (NUAA), PR China.
Laser-Aided Diagnostics of Plasmas and Gases (Series in Plasma Physics)
by K Muraoka M MaedaUpdated and expanded from the original Japanese edition, Laser-Aided Diagnostics of Gases and Plasmas takes a unique approach in treating laser-aided diagnostics. The book unifies the subject by joining applications instead of describing each application as a totally separate system. In taking this approach, it highlights the relative strengths of
Laser and Photonic Systems: Design and Integration (Industrial and Systems Engineering Series)
by Shimon Y. Nof Andrew M. Weiner Gary J. ChengNew, significant scientific discoveries in laser and photonic technologies, systems perspectives, and integrated design approaches can improve even further the impact in critical areas of challenge. Yet this knowledge is dispersed across several disciplines and research arenas. Laser and Photonic Systems: Design and Integration brings together a mu
Laser Applications in Manufacturing (Materials, Devices, and Circuits)
by Pankaj Kumar Manowar Hussain Amit Kumar Jain Sunil PathakThis book introduces the emerging areas of laser-based manufacturing such as additive manufacturing (AM) of metal matrix composites (MMCs), joining of hard-to-weld superalloys, damage-free machining of fiber-reinforced composites, surface properties enhancement using cladding techniques, and modeling and simulation of laser beam manufacturing techniques. Laser Applications in Manufacturing provides a quick guide for researchers and academicians to recent advancements in the development of powder-based MMCs manufactured using AM technology. This book: shows recent developments in functionally graded sheets or laminates and fabrication of fiber-reinforced composite using sheet lamination printing lists recent developments in the joining of dissimilar materials in diverse applications such as hybrid structures and lightweight components for increased performance and functionality includes many recent developments in machining carbon fiber, glass fiber, and natural fiber composite laminates for investigations of delamination and surface quality characteristics showcases different aspects of surface alloying of miniature components, hard and soft composite coating for various applications. Laser Applications in Manufacturing is recommended for researchers working on fabrication of numerous new and novel materials. The book serves as a resource for scientists and engineers working in laser-based manufacturing techniques who want to learn about the most up-to-date research.
Laser Applications in Physical Chemistry
by D.K. EvansThis book provides an introduction on applications of lasers in Chemistry. It describes laser as a tool for chemistry, the consideration involved in describing a laser beam and what happens to beam as it is propagated through a gas. The book is useful for graduates and advanced undergraduates.
Laser Applications in Surface Modification (Advanced Topics in Science and Technology in China #65)
by Jianhua Yao Qunli Zhang Rong Liu Guolong WuThis book introduces the applications of laser in surface modification, such as laser cladding of Stellite alloys and metal-ceramic composites. Besides, nanomaterials including carbon nanotubes and Al2O3 nanoparticles are brought into the laser processing, to form high-temperature resistance, chemical stability, and wear- and oxidation-resistant composite coatings. The readers will get more knowledge about the basic principle and application of laser cladding and laser surface hardening technologies, and gain a deep insight into the process and characteristics of the nanomaterial-assisted laser surface enhancement. It provides references for the researchers, engineers, and students in the fields of mechanical engineering, laser processing, and material engineering.
Laser-Arc Processes and Their Applications in Welding and Material Treatment
by Peter Seyffarth Igor KrivtsunLaser-Arc Processes and Their Applications in Welding and Material Treatment presents a comprehensive and timely overview of laser-arc processes for material joining and treatment, which is a current and developing research area. The authors review existing methods for combined welding and associated processes and describe theoretical investigation
Laser-Assisted Fabrication of Materials
by Indranil Manna Jyotsna Dutta MajumdarLaser assisted fabrication involves shaping of materials using laser as a source of heat. It can be achieved by removal of materials (laser assisted cutting, drilling, etc.), deformation (bending, extrusion), joining (welding, soldering) and addition of materials (surface cladding or direct laser cladding). This book on ´Laser assisted Fabrication' is aimed at developing in-depth engineering concepts on various laser assisted macro and micro-fabrication techniques with the focus on application and a review of the engineering background of different micro/macro-fabrication techniques, thermal history of the treated zone and microstructural development and evolution of properties of the treated zone.
Laser-Assisted Machining: Processes and Applications (Innovations in Materials and Manufacturing)
by Sandip Kunar Prasenjit ChatterjeeLASER-ASSISTED MACHINING This unique book develops exhaustive engineering perceptions of different laser-assisted techniques, reviews the engineering context of different laser fabrication techniques, and describes the application of laser-assisted fabrication techniques. Lasers are essential in the area of material processing because they can produce coherent beams with little divergence. The fabrication process known as surface cladding includes joining (soldering, welding), material removal (laser-aided drilling, cutting, etc.), deformation (extrusion, bending), and material addition. Some remarkable advantages of laser-assisted material development include faster processing rates and preservation of essential alloying components. However, the lack of widespread understanding of various material phenomena and how laser parameters affect them prevents the technology from being widely accepted on an industrial scale. Among the subjects Laser-Assisted Machining covers include high-powered lasers in material processing applications, laser-based joining of metallic and non-metallic materials, direct laser cladding, laser surface processing, laser micro and nano processing, emerging laser materials processing techniques, solid-state lasers, laser cutting, drilling and piercing, laser welding, laser bending or forming, laser cleaning, laser automation and in-process sensing, femtosecond laser micromachining, laser-assisted micro-milling/grinding, laser-assisted jet electrochemical micro-machining, laser-assisted water jet micro-machining, hybrid laser-electrochemical micromachining process, quill and nonreciprocal ultrafast laser writing, laser surface engineering, ultrashort pulsed laser surface texturing, laser interference patterning systems, laser interference lithography, laser-guided discharge texturing. Audience The book will be used by researchers in the fields of manufacturing technology and materials science as well as engineers and high-level technicians for a better understanding of various innovative and novel techniques to cope with the need of micromachining, as well as microfabrication industries for successful implementation of microproduct manufacturing.
Laser-Based Additive Manufacturing: Modeling, Simulation, and Experiments
by Narendra B. Dahotre Mangesh V. Pantawane Shashank SharmaLaser-Based Additive Manufacturing Explore laser-based additive manufacturing processes via multi-scale modeling and computer simulation In Laser-Based Additive Manufacturing: Modeling, Simulation, and Experiments, a distinguished team of researchers delivers an incisive framework for understanding materials processing using laser-based additive manufacturing (LAM). The book describes the use of computational modeling and simulation to explore and describe the LAM technique, to improve the compositional, phase, and microstructural evolution of the material, and to enhance the mechanical, chemical, and functional properties of the manufactured components. The accomplished authors combine a comprehensive overview of multi-scale modeling and simulation with experimental and practical observations, offering a systematic review of laser-material interactions in advanced LAM processes. They also describe the real-world applications of LAM, including component processing and surface functionalization. In addition to explorations of residual stresses, three-dimensional defects, and surface physical texture in LAM, readers will also find: A thorough introduction to additive manufacturing (AM), including the advantages of AM over conventional manufacturing and the challenges involved with using the technology A comprehensive exploration of computation materials science, including length- and time-scales in materials modeling and the current state of computational modeling in LAM Practical discussions of laser-material interaction in LAM, including the conversion of light energy to heat, modes of heat dissipation, and the dynamics of the melt-pool In-depth examinations of the microstructural and mechanical aspects of LAM integrated with modeling Perfect for materials scientists, mechanical engineers, and physicists, Laser-Based Additive Manufacturing: Modeling, Simulation, and Experiments is perfect for anyone seeking an insightful treatment of this cutting-edge technology in the areas of alloys, ceramics, and composites.
Laser-Based Additive Manufacturing of Metal Parts: Modeling, Optimization, and Control of Mechanical Properties (Advanced and Additive Manufacturing Series)
by Linkan Bian Nima Shamsaei John UsherLaser-Based Additive Manufacturing (LBAM) technologies, hailed by some as the "third industrial revolution," can increase product performance, while reducing time-to-market and manufacturing costs. This book is a comprehensive look at new technologies in LBAM of metal parts, covering topics such as mechanical properties, microstructural features, thermal behavior and solidification, process parameters, optimization and control, uncertainty quantification, and more. The book is aimed at addressing the needs of a diverse cross-section of engineers and professionals.
Laser-Based Measurements for Time and Frequency Domain Applications: A Handbook (Series in Optics and Optoelectronics)
by Pasquale Maddaloni Marco Bellini Paolo De NataleForeword by Nobel laureate Professor Theodor W. H�ch of Ludwig-Maximilians-UniversitätMunchenBased on the authors' experimental work over the last 25 years, Laser-Based Measurements for Time and Frequency Domain Applications: A Handbook presents basic concepts, state-of-the-art applications, and future trends in optical, atomic, and molecular physic
Laser-based Mid-infrared Sources and Applications (A Wiley-Science Wise Co-Publication)
by Konstantin L. VodopyanovAn important guide to the major techniques for generating coherent light in the mid-infrared region of the spectrumLaser-based Mid-infrared Sources and Applications gives a comprehensive overview of the existing methods for generating coherent light in the important yet difficult-to-reach mid-infrared region of the spectrum (2–20 μm) and their applications. The book describes major approaches for mid-infrared light generation including ion-doped solid-state lasers, fiber lasers, semiconductor lasers, and laser sources based on nonlinear optical frequency conversion, and reviews a range of applications: spectral recognition of molecules and trace gas sensing, biomedical and military applications, high-field physics and attoscience, and others. Every chapter starts with the fundamentals for a given technique that enables self-directed study, while extensive references help conduct deeper research. Laser-based Mid-infrared Sources and Applications provides up-to-date information on the state-of the art mid-infrared sources, discusses in detail the advancements made over the last two decades such as microresonators and interband cascade lasers, and explores novel approaches that are currently subjects of intense research such as supercontinuum and frequency combs generation. This important book: • Explains the fundamental principles and major techniques for coherent mid-infrared light generation • Discusses recent advancements and current cutting-edge research in the field • Highlights important biomedical, environmental, and military applications Written for researchers, academics, students, and engineers from different disciplines, the book helps navigate the rapidly expanding field of mid-infrared laser-based technologies.
Laser-Based Optical Detection of Explosives (Devices, Circuits, and Systems)
by Paul M. Pellegrino, Ellen L. Holthoff and Mikella E. FarrellLaser-Based Optical Detection of Explosives offers a comprehensive review of past, present, and emerging laser-based methods for the detection of a variety of explosives. This book: Considers laser propagation safety and explains standard test material preparation for standoff optical-based detection system evaluation Explores explosives detection using deep ultraviolet native fluorescence, Raman spectroscopy, laser-induced breakdown spectroscopy, reflectometry, and hyperspectral imaging Examines photodissociation followed by laser-induced fluorescence, photothermal methods, cavity-enhanced absorption spectrometry, and short-pulse laser-based techniques Describes the detection and recognition of explosives using terahertz-frequency spectroscopic techniques Each chapter is authored by a leading expert on the respective technology, and is structured to supply historical perspective, address current advantages and challenges, and discuss novel research and applications. Readers are left with an in-depth understanding and appreciation of each technology’s capabilities and potential for standoff hazard detection.
Laser-based Technologies for Sustainable Manufacturing (Advances in Manufacturing, Design and Computational Intelligence Techniques)
by Avinash Kumar Ashwani Kumar Abhishek KumarThis book provides scientific and technological insights on novel techniques of design and manufacturing using laser technologies. It showcases applications of laser micromachining in the biomedical industry, laser-based manufacturing processes in aerospace engineering, and high-precision laser-cutting in the home appliance sector. Features: Each chapter discusses a specific engineering problem and showcases its numerical, and experimental solution Provides scientific and technological insights on novel routes of design and manufacturing using laser technologies Synergizes exploration related to the various properties and functionalities through extensive theoretical and numerical modeling Highlights current issues, developments, and constraints in additive manufacturing Discusses applications of laser cutting machines in the manufacturing industry and laser micromachining for the biomedical industry The text discusses optical, and laser-based green manufacturing technologies and their application in diverse engineering fields including mechanical, electrical, biomedical, and computer. It further covers sustainability issues in laser-based manufacturing technologies and the development of laser-based ultra-precision manufacturing techniques. The text also discusses the use of artificial intelligence and machine learning in laser-based manufacturing techniques. It will serve as an ideal reference text for senior undergraduate, graduate students, and researchers in fields including mechanical engineering, aerospace engineering, manufacturing engineering, and production engineering.
Laser Beam Micro-milling of Micro-channels in Aerospace Alloys
by Saied Muhammed Hassan Darwish Naveed Ahmed Abdulrahman M. Al-AhmariThis volume is greatly helpful to micro-machining and laser engineers as it offers obliging guidelines about the micro-channel fabrications through Nd:YAG laser beam micro-milling. The book also demonstrates how the laser beam micro-milling behaves when operating under wet conditions (under water), and explores what are the pros and cons of this hybrid technique. From the predictive mathematical models, the readers can easily estimate the resulting micro-channel size against the desired laser parametric combinations. The book considers micro-channels in three highly important research materials commonly used in aerospace industry: titanium alloy Ti-6Al-4V, nickel alloy Inconel 718 and aluminum alloy AA 2024. Therefore, the book is highly practicable in the fields of micro-channel heat exchangers, micro-channel aerospace turbine blades, micro-channel heat pipes, micro-coolers and micro-channel pulsating heat plates. These are frequently used in various industries such as aerospace, automotive, biomedical and micro-electronics.
Laser Beam Propagation: Generation and Propagation of Customized Light
by Andrew ForbesHow do laser beams propagate? Innovative discoveries involving laser beams and their propagation properties are at the heart of Laser Beam Propagation: Generation and Propagation of Customized Light. This book captures the essence of laser beam propagation. Divided into three parts, it explores the fundamentals of how laser beams propagate, and pro
Laser Beam Propagation in Nonlinear Optical Media
by Shekhar Guha and Leonel P. Gonzalez"This is very unique and promises to be an extremely useful guide to a host of workers in the field. They have given a generalized presentation likely to cover most if not all situations to be encountered in the laboratory, yet also highlight several specific examples that clearly illustrate the methods. They have provided an admirable contribution to the community. If someone makes their living by designing lasers, optical parametric oscillators or other devices employing nonlinear crystals, or designing experiments incorporating laser beam propagation through linear or nonlinear media, then this book will be a welcome addition to their bookshelf."—Richard Sutherland, Mount Vernon Nazarene University, Ohio, USA Laser Beam Propagation in Nonlinear Optical Media provides a collection of expressions, equations, formulas, and derivations used in calculating laser beam propagation through linear and nonlinear media which are useful for predicting experimental results. The authors address light propagation in anisotropic media, oscillation directions of the electric field and displacement vectors, the walk-off angles between the Poynting and propagation vectors, and effective values of the d coefficient for biaxial, uniaxial, and isotropic crystals. They delve into solutions of the coupled three wave mixing equations for various nonlinear optical processes, including quasi-phase matching and optical parametric oscillation, and discuss focusing effects and numerical techniques used for beam propagation analysis in nonlinear media, and phase retrieval technique. The book also includes examples of MATLAB and FORTRAN computer programs for numerical evaluations. An ideal resource for students taking graduate level courses in nonlinear optics, Laser Beam Propagation in Nonlinear Optical Media can also be used as a reference for practicing professionals.
Laser Beam Scanning: Opto-Mechanical Devices, Systems, and Data Storage Optics (Optical Science And Engineering Ser. #8)
by MarshallWritten in an easy-to-read style, this comprehensive guide examines the currentknowledge on opto-mechanical laser beam scanning technology.Combining theoretical and practical aspects, Laser Beam Scanning discusses theapplications, performance, and design of holographic, polygonal, galvanometric, andresonant scanning systems.Bringing together the expertise of leading international authorities, this invaluable sourceprovides unique coverage on gas bearings for rotating scanning devices and windageassociated with polygonal scanners. This work also includes authoritative information onGaussian beam diameters and optical design of components and systems relating tooptical disk data storage.Containing time-saving chapter introductions and summaries, numerous illustrations andtables, useful definitions, and up-to-date references, this handy, on-the-job reference aidsoptical engineers and designers, electronic, electrical, and laser engineers; physicists; andgraduate-level students in optical engineering courses to apply laser beam scanning tonew designs successfully.
Laser Beam Shaping: Theory and Techniques, Second Edition (Proceedings Of Spie Ser.)
by Fred M. DickeyLaser Beam Shaping: Theory and Techniques addresses the theory and practice of every important technique for lossless beam shaping. Complete with experimental results as well as guidance on when beam shaping is practical and when each technique is appropriate, the Second Edition is updated to reflect significant developments in the field. This authoritative text: Features new chapters on axicon light ring generation systems, laser-beam-splitting (fan-out) gratings, vortex beams, and microlens diffusers Describes the latest advances in beam profile measurement technology and laser beam shaping using diffractive diffusers Contains new material on wavelength dependence, channel integrators, geometrical optics, and optical software Laser Beam Shaping: Theory and Techniques, Second Edition not only provides a working understanding of the fundamentals, but also offers insight into the potential application of laser-beam-profile shaping in laser system design.
Laser Beam Shaping Applications (Optical Science and Engineering #1)
by Fred M. Dickey and Todd E. LizotteThis new edition details the important features of beam shaping and exposes the subtleties of the theory and techniques that are best demonstrated through proven applications. New chapters cover illumination light shaping in optical lithography; optical micro-manipulation of live mammalian cells through trapping, sorting, and transfection; and laser beam shaping through fiber optic beam delivery. The book discusses applications in lithography, laser printing, optical data storage, stable isotope separation, and spatially dispersive lasers. It also provides a history of the field and includes extensive references.
Laser Capture Microdissection
by Graeme I. MurrayLaser microdissection techniques have revolutionized the ability of researchers in general, and pathologists in particular, to carry out molecular analysis on specific types of normal and diseased cells and to fully utilize the power of current molecular technologies including PCR, microarrays, and proteomics. In second edition of Laser Capture Microdissection: Methods and Protocols, experts in the field provide the reader with practical advice on how to carry out tissue-based laser microdissection successfully in their own laboratory using the different laser microdissection systems that are available and to apply a wide range of molecular technologies. The individual chapters encompass detailed descriptions of the individual laser based micro-dissection systems. The downstream applications of the laser microdissected tissue described in the book include PCR in its many different forms as well as gene expression analysis including application to microarrays and proteomics. Written in the highly successful Methods in Molecular Biology(tm) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Laser Capture Microdissection: Methods and Protocols, Second Edition is an ideal resource for researchers striving to move forward our understanding of normal physiology and pathology.
Laser Cladding
by Amir Khajepour Ehsan Toyserkani Stephen F. CorbinLaser Cladding reviews the techniques and equipment, process modeling and control, and the physical metallurgy of alloying and solidification during laser cladding. The authors clarify the interconnections laser cladding has with CAD/CAM design; automation and robotics; sensors, feedback, and control; physics material science, heat transfer, fluid dynamics, and powder metallurgy. As the first book entirely dedicated to the topic, it also offers a history of its development and a guide to applications and market opportunities. The book also compiles valuable information illustrated with real case studies based on the authors' experience.
Laser Cladding of Metals
by Pasquale CavaliereLaser cladding is an additive manufacturing technology capable of producing coatings due to the surface fusion of metals. The selected powder is fed into a focused laser beam to be melted and deposited as coating. This allows to apply material in a selected way onto those required sections of complex components. The process main properties are the production of a perfect metallurgically bonded and fully dense coatings; the minimal heat affected zone and low dilution between the substrate and filler material resulting in functional coatings that perform at reduced thickness, so fewer layers are applied; fine, homogeneous microstructure resulting from the rapid solidification rate that promotes wear resistance of carbide coatings; near net-shape weld build-up requires little finishing effort; extended weldability of sensitive materials like carbon-rich steels or nickel-based superalloys that are difficult or even impossible to weld using conventional welding processes; post-weld heat treatment is often eliminated as the small heat affected zone minimizes component stress; excellent process stability and reproducibility because it is numerical controlled welding process. The typical applications are the dimensional restoration; the wear and corrosion protection; additive manufacturing. The wide range of materials that can be deposited and its suitability for treating small areas make laser cladding particularly appropriate to tailor surface properties to local service requirements and it opens up a new perspective for surface engineered materials. The main key aspect to be scientifically and technologically explored are the type of laser; the powders properties; the processing parameters; the consequent microstructural and mechanical properties of the processed material; the capability of fabrication of prototypes to rapid tooling and rapid manufacturing.Distills critical concepts, methods, and applications from leading full-length chapters, along with the authors’s own deep understanding of the material taught, into a concise yet rigorous graduate and advanced undergraduate text;Reinforces concepts covered with detailed solutions to illuminating and challenging industrial applications;Discusses current and future applications of laser cladding in additive manufacturing.
Laser Cleaning: Fundamentals and Applications
by Feng Song Xuechun LinThis book highlights a comprehensive summary of the latest advances in research and applications of laser cleaning. As an innovative way of surface treatment, laser cleaning has received increasing global attention in today's environmentally conscious world. Laser cleaning has gone through a long history from theories to technological developments, and to a wide spectrum of applications. The book first presents the fundamental physics of laser cleaning and demonstrates how the theories have guided the innovation of technology and applications. Following that, the new and most used equipment for laser cleaning has been introduced. Applications in electrics, paint removal, rust removal, the mold industry, cultural heritage protection, and other fields are summarized with plenty of examples and discussions. The book is a valuable reference in laser cleaning for researchers who seek inspiration for their research, engineers who need specific information to guide their work, and students who must learn systematically with working examples.