Browse Results

Showing 38,926 through 38,950 of 65,066 results

Microwave and Millimeter-Wave Chips Based on Thin-Film Integrated Passive Device Technology: Design and Simulation

by Yongle Wu Weimin Wang

This book adopts the latest academic achievements of microwave and millimeter-wave chips based on thin-film integrated passive device technology as specific cases. Coherent processes of basic theories and design implementations of microwave and millimeter-wave chips are presented in detail. It forms a complete system from design theory, circuit simulation, full-wave electromagnetic simulation, and fabrication to measurement. Five representative microwave and millimeter-wave passive chips based on TFIPD technology are taken as examples to demonstrate the complete process from theory, design, simulation, fabrication, and measurement, which is comprehensive, systematical, and easy to learn and understand, convenient to operate, and close to the practical application. This book is mainly aimed at the design and simulation of microwave and millimeter-wave chips based on thin-film integrated passive device technology. On the basis of specific cases, it introduces the whole process from theory, design, simulation, optimization, fabrication to measurement of the balanced filter, microstrip filter, absorptive filter, power divider, and balun. This book is suitable for the professional technicians who are engaged in the design and engineering application of microwave and millimeter-wave device chips. It can also be used as the textbook of electronic science and technology, electromagnetic field and microwave technology, electronic engineering, radar engineering, integrated circuit, and other related majors in colleges and universities.

Microwave and Millimeter Wave Circuits and Systems

by Apostolos Georgiadis Hendrik Rogier Paolo Arcioni Luca Roselli

Microwave and Millimeter Wave Circuits and Systems: Emerging Design, Technologies and Applications provides a wide spectrum of current trends in the design of microwave and millimeter circuits and systems. In addition, the book identifies the state-of-the art challenges in microwave and millimeter wave circuits systems design such as behavioral modeling of circuit components, software radio and digitally enhanced front-ends, new and promising technologies such as substrate-integrated-waveguide (SIW) and wearable electronic systems, and emerging applications such as tracking of moving targets using ultra-wideband radar, and new generation satellite navigation systems. Each chapter treats a selected problem and challenge within the field of Microwave and Millimeter wave circuits, and contains case studies and examples where appropriate. Key Features: Discusses modeling and design strategies for new appealing applications in the domain of microwave and millimeter wave circuits and systemsWritten by experts active in the Microwave and Millimeter Wave frequency range (industry and academia)Addresses modeling/design/applications both from the circuit as from the system perspective Covers the latest innovations in the respective fieldsEach chapter treats a selected problem and challenge within the field of Microwave and Millimeter wave circuits, and contains case studies and examples where appropriate This book serves as an excellent reference for engineers, researchers, research project managers and engineers working in R&D, professors, and post-graduates studying related courses. It will also be of interest to professionals working in product development and PhD students.

Microwave and Millimetre-Wave Design for Wireless Communications

by Ian Robertson Mitchai Chongcheawchamnan Nutapong Somjit

This book describes a full range of contemporary techniques for the design of transmitters and receivers for communications systems operating in the range from 1 through to 300 GHz. In this frequency range there is a wide range of technologies that need to be employed, with silicon ICs at the core but, compared with other electronics systems, a much greater use of more specialist devices and components for high performance - for example, high Q-factor/low loss and good power efficiency. Many text books do, of course, cover these topics but what makes this book timely is the rapid adoption of millimetre-waves (frequencies from 30 to 300 GHz) for a wide range of consumer applications such as wireless high definition TV, "5G" Gigabit mobile internet systems and automotive radars. It has taken many years to develop low-cost technologies for suitable transmitters and receivers, so previously these frequencies have been employed only in expensive military and space applications. The book will cover these modern technologies, with the follow topics covered; transmitters and receivers, lumped element filters, tranmission lines and S-parameters, RF MEMS, RFICs and MMICs, and many others. In addition, the book includes extensive line diagrams to illustrate circuit diagrams and block diagrams of systems, including diagrams and photographs showing how circuits are implemented practically. Furthermore, case studies are also included to explain the salient features of a range of important wireless communications systems. The book is accompanied with suitable design examples and exercises based on the Advanced Design System - the industry leading CAD tool for wireless design. More importantly, the authors have been working with Agilent Technologies on a learning & teaching initiative (www.awrcorp.com/professors-in-partnership), which is designed to promote access to ongoing microwave and RF educational content that enhances and promotes AWR software solutions through ebooks and textbooks. In parallel, Agilent have recently started to offer access to this software to students without charge, providing universities have a site license. Students are able to download the software and use it on their own devices. This advanced text is therefore developed with the partnership in mind; to enable the reader to develop and their own circuits and subsystems using modern software tools and test equipment.

Microwave and RF Product Applications (Principles And Applications In Engineering Ser. #Vol. 17)

by Mike Golio

The field of microwave engineering has undergone a radical transformation in recent years, as commercial wireless endeavors overtook defense and government work. The modern microwave and RF engineer must be knowledgeable about customer expectations, market trends, manufacturing technologies, and factory models to a degree that is unprecedented. Unf

Microwave and RF Vacuum Electronic Power Sources (The Cambridge RF and Microwave Engineering Series)

by Richard G. Carter

Do you design and build vacuum electron devices, or work with the systems that use them? Quickly develop a solid understanding of how these devices work with this authoritative guide, written by an author with over fifty years of experience in the field. <P><P>Rigorous in its approach, it focuses on the theory and design of commercially significant types of gridded, linear-beam, crossed-field and fast-wave tubes. Essential components such as waveguides, resonators, slow-wave structures, electron guns, beams, magnets and collectors are also covered, as well as the integration and reliable operation of devices in microwave and RF systems. Complex mathematical analysis is kept to a minimum, and Mathcad worksheets supporting the book online aid understanding of key concepts and connect the theory with practice. Including coverage of primary sources and current research trends, this is essential reading for researchers, practitioners and graduate students working on vacuum electron devices.<P> Provides an up-to-date and comprehensive treatment of the theory and design of vacuum electron devices.<p> Avoids unnecessary advanced mathematics.<p> Accompanied online by a library of Mathcad worksheets.

Microwave and Wireless Measurement Techniques

by Nuno Borges Carvalho Dominique Schreurs

From typical metrology parameters for common wireless and microwave components to the implementation of measurement benches, this introduction to metrology contains all the key information on the subject. Using it, readers will be able to: - Interpret and measure most of the parameters described in a microwave component's datasheet - Understand the practical limitations and theoretical principles of instrument operation - Combine several instruments into measurement benches for measuring microwave and wireless quantities. Several practical examples are included, demonstrating how to measure intermodulation distortion, error vector magnitude, S-parameters and large signal waveforms. Each chapter then ends with a set of exercises, allowing readers to test their understanding of the material covered and making the book equally suited for course use and for self-study.

Microwave and Wireless Synthesizers: Theory and Design

by Ulrich L. Rohde Enrico Rubiola Jerry C. Whitaker

The new edition of the leading resource on designing digital frequency synthesizers from microwave and wireless applications, fully updated to reflect the most modern integrated circuits and semiconductors Microwave and Wireless Synthesizers: Theory and Design, Second Edition, remains the standard text on the subject by providing complete and up-to-date coverage of both practical and theoretical aspects of modern frequency synthesizers and their components. Featuring contributions from leading experts in the field, this classic volume describes loop fundamentals, noise and spurious responses, special loops, loop components, multiloop synthesizers, and more. Practical synthesizer examples illustrate the design of a high-performance hybrid synthesizer and performance measurement techniques—offering readers clear instruction on the various design steps and design rules. The second edition includes extensively revised content throughout, including a modern approach to dealing with the noise and spurious response of loops and updated material on digital signal processing and architectures. Reflecting today’s technology, new practical and validated examples cover a combination of analog and digital synthesizers and hybrid systems. Enhanced and expanded chapters discuss implementations of direct digital synthesis (DDS) architectures, the voltage-controlled oscillator (VCO), crystal and other high-Q based oscillators, arbitrary waveform generation, vector signal generation, and other current tools and techniques. Now requiring no additional literature to be useful, this comprehensive, one-stop resource: Provides a fully reviewed, updated, and enhanced presentation of microwave and wireless synthesizers Presents a clear mathematical method for designing oscillators for best noise performance at both RF and microwave frequencies Contains new illustrations, figures, diagrams, and examples Includes extensive appendices to aid in calculating phase noise in free-running oscillators, designing VHF and UHF oscillators with CAD software, using state-of-the-art synthesizer chips, and generating millimeter wave frequencies using the delay line principle Containing numerous designs of proven circuits and more than 500 relevant citations from scientific journal and papers, Microwave and Wireless Synthesizers: Theory and Design, Second Edition, is a must-have reference for engineers working in the field of radio communication, and the perfect textbook for advanced electri

Microwave-assisted Extraction for Bioactive Compounds

by Giancarlo Cravotto Farid Chemat

With increasing energy prices and the drive to reduce CO2 emissions, food industries are challenged to find new technologies in order to reduce energy consumption, to meet legal requirements on emissions, product/process safety and control, and for cost reduction and increased quality as well as functionality. Extraction is one of the promising innovation themes that could contribute to sustainable growth in the chemical and food industries. For example, existing extraction technologies have considerable technological and scientific bottlenecks to overcome, such as often requiring up to 50% of investments in a new plant and more than 70% of total process energy used in food, fine chemicals and pharmaceutical industries. These shortcomings have led to the consideration of the use of new "green" techniques in extraction, which typically use less solvent and energy, such as microwave extraction. Extraction under extreme or non-classical conditions is currently a dynamically developing area in applied research and industry. Using microwaves, extraction and distillation can now be completed in minutes instead of hours with high reproducibility, reducing the consumption of solvent, simplifying manipulation and work-up, giving higher purity of the final product, eliminating post-treatment of waste water and consuming only a fraction of the energy normally needed for a conventional extraction method. Several classes of compounds such as essential oils, aromas, anti-oxidants, pigments, colours, fats and oils, carbohydrates, and other bioactive compounds have been extracted efficiently from a variety of matrices (mainly animal tissues, food, and plant materials). The advantages of using microwave energy, which is a non-contact heat source, includes more effective heating, faster energy transfer, reduced thermal gradients, selective heating, reduced equipment size, faster response to process heating control, faster start-up, increased production, and elimination of process steps. This book will present a complete picture of the current knowledge on microwave-assisted extraction (MAE) of bioactive compounds from food and natural products. It will provide the necessary theoretical background and details about extraction by microwaves, including information on the technique, the mechanism, protocols, industrial applications, safety precautions, and environmental impacts.

Microwave-assisted Polymer Synthesis

by Richard Hoogenboom Ulrich S. Schubert Frank Wiesbrock

The series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science. The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics. Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist. Review articles for the individual volumes are invited by the volume editors. Single contributions can be specially commissioned. Readership: Polymer scientists, or scientists in related fields interested in polymer and biopolymer science, at universities or in industry, graduate students

Microwave Bandpass Filters for Wideband Communications

by Sheng Sun Lei Zhu Rui Li

This book will appeal to scientists and engineers who are concerned with the design of microwave wideband devices and systems. For advanced (ultra)-wideband wireless systems, the necessity and design methodology of wideband filters will be discussed with reference to the inherent limitation in fractional bandwidth of classical bandpass filters. Besides the detailed working principles, a large number of design examples are demonstrated, which can be easily followed and modified by the readers to achieve their own desired specifications. Therefore, this book is of interest not only to students and researchers from academia, but also to design engineers in industry. With the help of complete design procedures and tabulated design parameters, even those with little filter design experience, will find this book to be a useful design guideline and reference, which can free them from tedious computer-aided full-wave electromagnetic simulations. Among different design proposals, wideband bandpass filters based on the multi-mode resonator have demonstrated many unparalleled attractive features, including a simple design methodology, compact size, low loss and good linearity in the wide passband, enhanced out-of-band rejection, and easy integration with other circuits/antennas. A conventional bandpass filter works under single dominant resonant modes of a few cascaded transmission line resonators and its operating bandwidth is widened via enhanced coupling between the adjacent resonators. However, this traditional approach needs an extremely high coupling degree of coupled-lines while producing a narrow upper stopband between the dominant and harmonic bands. As a sequence, the desired dominant passband is restricted to an extent less than 60% in fractional bandwidth. To circumvent these issues and break with the tradition, a filter based on the multiple resonant modes was initially introduced in 2000 by the first author of this book. Based on this novel concept, a new class of wideband filters with fractional bandwidths larger than 60% has been successfully developed so far. This book, presents and characterizes a variety of multi-mode resonators with stepped-impedance or loaded-stub configurations using the matured transmission line theory for development of advanced microwave wideband filters.

Microwave Circuit Design Using Linear and Nonlinear Techniques

by George D. Vendelin Anthony M. Pavio Ulrich L. Rohde Matthias Rudolph

Four leaders in the field of microwave circuit design share their newest insights into the latest aspects of the technology The third edition of Microwave Circuit Design Using Linear and Nonlinear Techniques delivers an insightful and complete analysis of microwave circuit design, from their intrinsic and circuit properties to circuit design techniques for maximizing performance in communication and radar systems. This new edition retains what remains relevant from previous editions of this celebrated book and adds brand-new content on CMOS technology, GaN, SiC, frequency range, and feedback power amplifiers in the millimeter range region. The third edition contains over 200 pages of new material. The distinguished engineers, academics, and authors emphasize the commercial applications in telecommunications and cover all aspects of transistor technology. Software tools for design and microwave circuits are included as an accompaniment to the book. In addition to information about small and large-signal amplifier design and power amplifier design, readers will benefit from the book’s treatment of a wide variety of topics, like: An in-depth discussion of the foundations of RF and microwave systems, including Maxwell’s equations, applications of the technology, analog and digital requirements, and elementary definitions A treatment of lumped and distributed elements, including a discussion of the parasitic effects on lumped elements Descriptions of active devices, including diodes, microwave transistors, heterojunction bipolar transistors, and microwave FET Two-port networks, including S-Parameters from SPICE analysis and the derivation of transducer power gain Perfect for microwave integrated circuit designers, the third edition of Microwave Circuit Design Using Linear and Nonlinear Techniques also has a place on the bookshelves of electrical engineering researchers and graduate students. It’s comprehensive take on all aspects of transistors by world-renowned experts in the field places this book at the vanguard of microwave circuit design research.

Microwave Devices and Circuits for Advanced Wireless Communication: Design and Analysis (Materials, Devices, and Circuits)

by Ghanshyam Singh Indrasen Singh Dilip Kumar Choudhary Naveen Mishra Naser Ojaroudi Parchin

This book offers a comprehensive overview of design and analysis of microwave devices and circuits for 5G and beyond wireless communication systems. It focuses on modern microwave antennas, filters, metamaterials, and MIMO systems. It includes a design approach based on Artificial Intelligence and the practical use of microwave devices and circuits in commercial, medical, and military applications.Microwave Devices and Circuits for Advanced Wireless Communications: Design and Analysis explores the performance of microwave devices and circuits by highlighting the difficulties encountered by researchers and designers such as latency, interoperability, wireless coexistence, data streaming, safety, security, and privacy. The book explores the most important aspects of antenna design, including radiation pattern control, impedance matching with bandwidth improvement, and gain enhancement. It also examines different categories of metasurfaces, including frequency-selective surfaces (FSS) and electromagnetic bandgap (EBG) structures, and their distinct roles in antenna design. Additionally, the book examines concepts such as ultra-wideband (UWB) radar for 5G millimeter wave applications, and advanced techniques such as synthetic aperture radar (SAR), beam-forming, compressed sensing, and diffraction tomography for enabling high-resolution imaging across wider application areas. The authors also present an overview on applying machine learning (ML) techniques to advanced wireless communication for signal-processing tasks such as signal denoising, equalization, and modulation recognition. They then discuss the potential significance of UAV communication systems in achieving seamless connection, quality of service (QoS), as well as the difficulties and potential remedies involved in building dependable networks using UAVs. Throughout the book the authors offer a critical assessment of the strengths and limitations of each topic and approach presented, thus providing valuable guidance for future research in this exciting field.This book will be helpful for graduate students, researchers, and engineers working in the area of design and reliability of circuits for microwave and communication systems.

Microwave Dielectric Spectroscopy of Ferroelectrics and Related Materials

by Jonas Grigas

In this important book, the author summarizes and generalizes the results of 25 years of work in this exciting field, which has been developing extensively within the last few decades. The reader will find discussions of many crystals that were investigated in the microwave region, including low-dimensional and ferroelectric semiconductors, protonic conductors, quasi-one-dimensional H-bonded. and other order-disorder ferroelectrics. This volume is an essential reference for all scientists and graduate students whose interests are connected to the physics of ferroelectrics and related materials; the physics of structural phase transitions; and superionic conductors. It will also be of value to those interested in developing or exploiting microwave measurement techniques.

Microwave Electronic Circuit Technology

by Yoshihiro Konishi

Provides a grounding in the physics behind the operational principles of high frequency technologies. The text presents up-to-date methods, as well as the research and developments of more efficient devices for use in applications, from mobile and satellite communications and wireless Local Area Networks to energy transformation and sensors. Examples and theories support the material.

Microwave Electronics (The Cambridge RF and Microwave Engineering Series)

by Giovanni Ghione Marco Pirola

Drawing on over twenty years of teaching experience, this comprehensive yet self-contained text provides an in-depth introduction to the field of integrated microwave electronics. Ideal for a first course on the subject, it covers essential topics such as passive components and transistors, linear, low-noise and power amplifiers, and microwave measurements. An entire chapter is devoted to CAD techniques for analysis and design, covering examples of easy-to-medium difficulty for both linear and non-linear subsystems, and supported online by ADS and AWR project files. More advanced topics are also covered, providing an up-to-date overview of compound semiconductor technologies and treatment of electromagnetic issues and models. Readers can test their knowledge with end-of-chapter questions and numerical problems, and solutions and lecture slides are available online for instructors. This is essential reading for graduate and senior undergraduate students taking courses in microwave, radio-frequency and high-frequency electronics, as well as professional microwave engineers.

Microwave Electronics

by Andrey D. Grigoriev Vyacheslav A. Ivanov Sergey I. Molokovsky

This book describes the physical basis of microwave electronics and related topics, such as microwave vacuum and microwave semiconductor devices.It comprehensively discusses the main types of microwave vacuum and microwave semiconductor devices, their principles of action, theory, parameters and characteristics, as well as ways of increasing the frequency limit of various devices up to the terahertz frequency band. Further, it applies a unified approach to describe charged particle interaction within electromagnetic fields and the motion laws of charged particles in various media. The book is intended as a manual for researchers and engineers, as well as advanced undergraduate and graduate students.

Microwave Filters for Communication Systems: Fundamentals, Design, and Applications

by Richard J. Cameron Chandra M. Kudsia Raafat R. Mansour

An in-depth look at the state-of-the-art in microwave filter design, implementation, and optimization Thoroughly revised and expanded, this second edition of the popular reference addresses the many important advances that have taken place in the field since the publication of the first edition and includes new chapters on Multiband Filters, Tunable Filters and a chapter devoted to Practical Considerations and Examples. One of the chief constraints in the evolution of wireless communication systems is the scarcity of the available frequency spectrum, thus making frequency spectrum a primary resource to be judiciously shared and optimally utilized. This fundamental limitation, along with atmospheric conditions and interference have long been drivers of intense research and development in the fields of signal processing and filter networks, the two technologies that govern the information capacity of a given frequency spectrum. Written by distinguished experts with a combined century of industrial and academic experience in the field, Microwave Filters for Communication Systems: Provides a coherent, accessible description of system requirements and constraints for microwave filters Covers fundamental considerations in the theory and design of microwave filters and the use of EM techniques to analyze and optimize filter structures Chapters on Multiband Filters and Tunable Filters address the new markets emerging for wireless communication systems and flexible satellite payloads and A chapter devoted to real-world examples and exercises that allow readers to test and fine-tune their grasp of the material covered in various chapters, in effect it provides the roadmap to develop a software laboratory, to analyze, design, and perform system level tradeoffs including EM based tolerance and sensitivity analysis for microwave filters and multiplexers for practical applications. Microwave Filters for Communication Systems provides students and practitioners alike with a solid grounding in the theoretical underpinnings of practical microwave filter and its physical realization using state-of-the-art EM-based techniques.

Microwave High Power High Efficiency GaN Amplifiers for Communication (Lecture Notes in Electrical Engineering #955)

by Subhash Chandra Bera

The textbook discusses design and analysis of microwave high power and high efficiency amplifiers for communications, appropriate for undergraduate, post-graduate students, practical circuit designers and researchers in the field of electronics and communication engineering. This book covers basics of III-V group semiconductor materials and GaAs and GaN based High Electron Mobility Transistors (HEMTs) most suitable for microwave and mm wave power amplifiers required for present wireless communication systems and upcoming 4G and 5G mobile base stations. The book describes design and analysis of classical class of amplifier operations such as Class-A, B, AB, C and F. The coverage extends to advanced classes of amplifier operation such as extended continuous Class-B/Class-J, and extended continuous Class-F operations for broadband, high power and high efficiency performance. Analytical expressions are derived for circuit elements and performance parameters for clear understanding and required for practical design of power amplifiers. Each topic is supplemented with suitable schematic diagrams, analytical expressions and plotted results for clear understanding.

Microwave, Infrared, and Laser Transitions of Methanol Atlas of Assigned Lines from 0 to 1258 cm-1: Atlas Of Assigned Lines From 0 To 1258 Cm

by Giovanni Moruzzi

This unique atlas presents the recorded spectrum of CH3OH, the main isotopic species of methanol, in the range 28-1258 cm-1. The spectral plot is accompanied by a list of all currently assigned rotation-torsion-vibration lines in the absorption spectrum of methanol. The list of nearly 35,000 transitions spans all of the known microwave transitions, as well as the region of coincidence with CO2 laser emissions.

Microwave Integrated Circuit Components Design through MATLAB®

by S Raghavan

MICROWAVE INTEGRATED CIRCUIT COMPONENTS DESIGN THROUGH MATLAB® This book teaches the student community microwave integrated circuit component design through MATLAB®, helping the reader to become conversant in using codes and, thereafter, commercial software for verification purposes only. Microwave circuit theory and its comparisons, transmission line networks, S-parameters, ABCD parameters, basic design parameters of planar transmission lines (striplines, microstrips, slot lines, coplanar waveguides, finlines), filter theory, Smith chart, inverted Smith chart, stability circles, noise figure circles and microwave components, are thoroughly explained in the book. The chapters are planned in such a way that readers get a thorough understanding to ensure expertise in design. Aimed at senior undergraduates, graduates and researchers in electrical engineering, electromagnetics, microwave circuit design and communications engineering, this book: • Explains basic tools for design and analysis of microwave circuits such as the Smith chart and network parameters • Gives the advantage of realizing the output without wiring the circuit by simulating through MATLAB code • Compares distributed theory with network theory • Includes microwave components, filters and amplifiers S. Raghavan was a Senior Professor (HAG) in the Department of Electronics and Communication Engineering, National Institute of Technology (NIT), Trichy, India and has 39 years of teaching and research experience at the Institute. His interests include: microwave integrated circuits, RF MEMS, Bio MEMS, metamaterial, frequency selective surfaces (FSS), substrate integrated waveguides (SIW), biomedical engineering and microwave engineering. He has established state-of-the-art MICs and microwave research laboratories at NIT, Trichy with funding from the Indian government. He is a Fellow/Senior Member in more than 24 professional societies including: IEEE (MTT, EMBS, APS), IETE, IEI, CSI, TSI, ISSS, ILA and ISOI. He is twice a recipient of the Best Teacher Award, and has received the Life Time Achievement Award, Distinguished Professor of Microwave Integrated Circuit Award and Best Researcher Award.

Microwave Line Of Sight Link Engineering

by Pablo Angueira Juan Antonio Romo

A comprehensive guide to the design, implementation, and operation of line of sight microwave link systems The microwave Line of Sight (LOS) transport network of any cellular operator requires at least as much planning effort as the cellular infrastructure itself. The knowledge behind this design has been kept private by most companies and has not been easy to find. Microwave Line of Sight Link Engineering solves this dilemma. It provides the latest revisions to ITU reports and recommendations, which are not only key to successful design but have changed dramatically in recent years. These include the methodologies related to quality criteria, which the authors address and explain in depth. Combining relevant theory with practical recommendations for such critical planning decisions as frequency band selection, radio channel arrangements, site selection, antenna installation, and equipment choice, this one-stop primer: Describes the procedure for designing a frequency plan and a channel arrangement structure according to ITU current standards, illustrated with specific application examples Offers analytical examples that illustrate the specifics of calculations and provide order of magnitude for parameters and design factors Presents case studies that describe real-life projects, putting together the puzzle pieces necessary when facing a real design created from scratch Microwave Line of Sight Link Engineering is an indispensable resource for radio engineers who need to understand international standards associated with LOS microwave links. It is also extremely valuable for students approaching the topic for the first time.

Microwave Materials and Applications

by Heli Jantunen Mailadil T. Sebastian Rick Ubic

The recent rapid progress in wireless telecommunication, including the Internet of Things, 5th generation wireless systems, satellite broadcasting, and intelligent transport systems has increased the need for low-loss dielectric materials and modern fabrication techniques. These materials have excellent electrical, dielectric, and thermal properties and have enormous potential, especially in wireless communication, flexible electronics, and printed electronics. Microwave Materials and Applications discusses the methods commonly employed for measuring microwave dielectric properties, the various attempts reported to solve problems of materials chemistry and crystal structure, doping, substitution, and composite formation, highlighting the processing techniques, morphology influences, and applications of microwave materials whilst summarizing many of the recent technical research accomplishments in the area of microwave dielectrics and applications Chapters examine: • Oxide ceramics for dielectric resonators and substrates • HTCC, LTCC and ULTCC tapes for substrates • Polymer ceramic composites for printed circuit boards • Elastomer-ceramic composites for flexible electronics • Dielectric inks • EMI shielding materials • Microwave ferrites A comprehensive Appendix presents the fundamental properties for more than 4000 low-loss dielectric ceramics, their composition, crystal structure, and their microwave dielectric properties. Microwave Materials and Applications presents a comprehensive view of all aspects of microwave materials and applications, making it useful for scientists, industrialists, engineers, and students working on current and emerging applications of wireless communications and consumer electronics.

Microwave-Mediated Biofuel Production

by Veera G. Gude

This book focuses on chemical syntheses and processes for biofuel production mediated by microwave energy. This is the first contribution in this area serving as a resource and guidance manual for understanding the principles, mechanisms, design, and applications of microwaves in biofuel process chemistry. Green chemistry of microwave-mediated biofuel reactions and thermodynamic potentials for the process biochemistry are the focus of this book. Microwave generation, wave propagation, process design, development and configurations, and biofuel applications are discussed in detail.

Microwave Noncontact Motion Sensing and Analysis

by Jenshan Lin Changzhi Li

An authoritative guide to the theory, technologies, and state-of-the-art applications in microwave noncontact sensing and analysisEngineering researchers have recently developed exciting advances in microwave noncontact sensing and analysis, with new applications in fields ranging from medicine to structural engineering, manufacturing to transportation. This book provides an authoritative look at the current state-of-the-art in the field.Drawing upon their years of experience in both cutting-edge research and industry applications, the authors address microwave radar for both noncontact vital sign detection and mechanical movement measurement. They explore key advances in everyday applications of microwave and Doppler radar, especially in the areas of radio frequency technologies, microelectronic fabrication processes, and signal processing hardware and algorithms.Microwave Noncontact Motion Sensing and Analysis:Reviews the theory and technical basics, from electromagnetic propagation to signal processingDiscusses all major types of motion sensing radar, including Doppler, pulse, and FMCWExplores important advances in detection and analysis techniquesUses numerous case studies to illustrate current applications in an array of fieldsProvides integrated coverage of human vital sign detection, through-wall radar, and Doppler vibrometryOffers a well-informed look at emerging technologies and the shape of things to comeAn important resource for engineers and researchers with a professional interest in micro-wave sensing technology, Microwave Noncontact Motion Sensing and Analysis is also a source of insight and guidance for professionals in healthcare, transportation safety, the military, and law enforcement.

Microwave Numerical Solutions

by Ștefan Cantaragiu

This book provides rigorous mathematical models to enable understanding of the propagation characteristics of electromagnetic fields. The author also describes the configuration of real, existing propagation modes of the microwave line by means of accurate numerical methods. Coverage also includes a comprehensive introduction to microwave concepts and the design of active and passive microwave components. The interactive programs package generically named “Microwave Solutions”, available and stored in cloud repository, illustrates its modular use and implementation, and facilitates the integration of microwave components and circuits, and their applications. This book is a valuable source for anyone interested in broadening their knowledge of electromagnetism and microwave circuit design.

Refine Search

Showing 38,926 through 38,950 of 65,066 results