Browse Results

Showing 39,226 through 39,250 of 64,229 results

Models, Methods and Tools for Product Service Design: The Manutelligence Project (SpringerBriefs in Applied Sciences and Technology)

by Sergio Terzi Laura Cattaneo

This open access book summarizes research being pursued within the Manutelligence project, the goal of which is to help enterprises develop smart, social and flexible products with high value added services. Manutelligence has improved Product and Service Design by developing suitable models and methods, and connecting them through a modular, collaborative and secure ICT Platform. The use of real data collected in real time by Internet of Things (IoT) technologies underpins the design of product-service systems and makes it possible to monitor them throughout their life cycle. Available data allows costs and sustainability issues to be more accurately measured and simulated in the form of Life Cycle Cost (LCC) and Life Cycle Assessment (LCA). Analysing data from IoT systems and sharing LCC and LCA information via the ICT Platform can help to accelerate the design of product-service systems, reduce costs and better understand customer needs. Industrial partners involved in Manutelligence provide a clear overview of the project’s outcomes, and demonstrate how its technological solutions can be used to improve the design of product-service systems and the management of product-service life cycles.

Models, Molecules and Mechanisms in Biogerontology: Physiological Abnormalities, Diseases and Interventions

by Pramod C. Rath

This book examines the basic cellular and molecular mechanisms associated with aging. It comprehensively describes the genetic, epigenetic, biochemical and metabolic regulation of aging, as well as some important age-related diseases. Divided into two major sections, it takes readers through the various aspects of aging in a story-like manner and suggests various interventions for healthy aging, such as dietary restriction, regular exercise, nutrition and maintaining a balanced and a non-stressful lifestyle. It describes the implications of aging on the nervous system, metabolism, immunity and stem cells as well as care for the elderly. The book is an ideal companion for both new and established researchers in the field and is also useful for educators, clinicians and policy makers.

Models, Molecules and Mechanisms in Biogerontology: Cellular Processes, Metabolism and Diseases

by Pramod C. Rath

The book deals with basic cellular and molecular mechanisms associated with aging. It comprehensively describes the important genetic, epigenetic, biochemical and metabolic regulations during aging, as well as some important age-related diseases.The book is divided into four major sections for easy understanding. It takes the readers through the various aspects of aging in a story-like manner. Certain interventions for healthy aging such as dietary restriction, regular exercise and maintaining a balanced and peaceful life-style are also suggested by the experts. The book would be a companion for both beginners, as well as established researchers in the field. It would be useful for science education, research, clinical approach and policy making.

Models of Biopolymers By Ring-Opening Polymerization

by Stanislaw Penczek

There are a number of methods used to synthetically prepare biopolymers, their models, and bioanalogous polymers. This work approaches the syntheses of the three major groups of biopolymers existing in nature - polypeptides, polysaccharides, and nucleic and teichoic acids - by ring-opening polymerization. Until now, this method has never been reviewed uniformly for these three groups. The majority of models prepared by ring-opening polymerization can not reach the complexity of the actual biological molecules. However, a better understanding of these biopolymers will aid in the use of such molecules in several fields of application in research and other high technologies, where they mimic functions of related biopolymers in living organisms.

Models of Innovation: The History of an Idea

by Benoît Godin

Models abound in science, technology, and society (STS) studies and in science, technology, and innovation (STI) studies. They are continually being invented, with one author developing many versions of the same model over time. At the same time, models are regularly criticized. Such is the case with the most influential model in STS-STI: the linear model of innovation.In this book, Benoît Godin examines the emergence and diffusion of the three most important conceptual models of innovation from the early twentieth century to the late 1980s: stage models, linear models, and holistic models. Godin first traces the history of the models of innovation constructed during this period, considering why these particular models came into being and what use was made of them. He then rethinks and debunks the historical narratives of models developed by theorists of innovation. Godin documents a greater diversity of thinkers and schools than in the conventional account, tracing a genealogy of models beginning with anthropologists, industrialists, and practitioners in the first half of the twentieth century to their later formalization in STS-STI. Godin suggests that a model is a conceptualization, which could be narrative, or a set of conceptualizations, or a paradigmatic perspective, often in pictorial form and reduced discursively to a simplified representation of reality. Why are so many things called models? Godin claims that model has a rhetorical function. First, a model is a symbol of "scientificity." Second, a model travels easily among scholars and policy makers. Calling a conceptualization or narrative or perspective a model facilitates its propagation.

Models of Innovation: The History of an Idea (Inside Technology)

by Benoit Godin

Benoît Godin is a Professor at the Institut national de la recherche scientifique, Montreal.Models abound in science, technology, and society (STS) studies and in science, technology, and innovation (STI) studies. They are continually being invented, with one author developing many versions of the same model over time. At the same time, models are regularly criticized. Such is the case with the most influential model in STS-STI: the linear model of innovation.In this book, Benoît Godin examines the emergence and diffusion of the three most important conceptual models of innovation from the early twentieth century to the late 1980s: stage models, linear models, and holistic models. Godin first traces the history of the models of innovation constructed during this period, considering why these particular models came into being and what use was made of them. He then rethinks and debunks the historical narratives of models developed by theorists of innovation. Godin documents a greater diversity of thinkers and schools than in the conventional account, tracing a genealogy of models beginning with anthropologists, industrialists, and practitioners in the first half of the twentieth century to their later formalization in STS-STI. Godin suggests that a model is a conceptualization, which could be narrative, or a set of conceptualizations, or a paradigmatic perspective, often in pictorial form and reduced discursively to a simplified representation of reality. Why are so many things called models? Godin claims that model has a rhetorical function. First, a model is a symbol of “scientificity.” Second, a model travels easily among scholars and policy makers. Calling a conceptualization or narrative or perspective a model facilitates its propagation.

Models of My Life (The\mit Press Ser.)

by Herbert A. Simon

In this candid and witty autobiography, Nobel laureate Herbert A. Simon looks at his distinguished and varied career, continually asking himself whether (and how) what he learned as a scientist helps to explain other aspects of his life.A brilliant polymath in an age of increasing specialization, Simon is one of those rare scholars whose work defines fields of inquiry. Crossing disciplinary lines in half a dozen fields, Simon's story encompasses an explosion in the information sciences, the transformation of psychology by the information-processing paradigm, and the use of computer simulation for modeling the behavior of highly complex systems.Simon's theory of bounded rationality led to a Nobel Prize in economics, and his work on building machines that think—based on the notion that human intelligence is the rule-governed manipulation of symbols—laid conceptual foundations for the new cognitive science. Subsequently, contrasting metaphors of the maze (Simon's view) and of the mind (neural nets) have dominated the artificial intelligence debate.There is also a warm account of his successful marriage and of an unconsummated love affair, letters to his children, columns, a short story, and political and personal intrigue in academe.

Models of My Life

by Herbert A. Simon

In this candid and witty autobiography, Nobel laureate Herbert A. Simon looks at his distinguished and varied career, continually asking himself whether (and how) what he learned as a scientist helps to explain other aspects of his life.A brilliant polymath in an age of increasing specialization, Simon is one of those rare scholars whose work defines fields of inquiry. Crossing disciplinary lines in half a dozen fields, Simon's story encompasses an explosion in the information sciences, the transformation of psychology by the information-processing paradigm, and the use of computer simulation for modeling the behavior of highly complex systems.Simon's theory of bounded rationality led to a Nobel Prize in economics, and his work on building machines that think -- based on the notion that human intelligence is the rule-governed manipulation of symbols -- laid conceptual foundations for the new cognitive science. Subsequently, contrasting metaphors of the maze (Simon's view) and of the mind (neural nets) have dominated the artificial intelligence debate.There is also a warm account of his successful marriage and of an unconsummated love affair, letters to his children, columns, a short story, and political and personal intrigue in academe.

Models of Neurons and Perceptrons: Selected Problems and Challenges (Studies In Computational Intelligence #770)

by Andrzej Bielecki

This book describes models of the neuron and multilayer neural structures, with a particular focus on mathematical models. It also discusses electronic circuits used as models of the neuron and the synapse, and analyses the relations between the circuits and mathematical models in detail. The first part describes the biological foundations and provides a comprehensive overview of the artificial neural networks. The second part then presents mathematical foundations, reviewing elementary topics, as well as lesser-known problems such as topological conjugacy of dynamical systems and the shadowing property. The final two parts describe the models of the neuron, and the mathematical analysis of the properties of artificial multilayer neural networks. Combining biological, mathematical and electronic approaches, this multidisciplinary book it useful for the mathematicians interested in artificial neural networks and models of the neuron, for computer scientists interested in formal foundations of artificial neural networks, and for the biologists interested in mathematical and electronic models of neural structures and processes.

Models of Science Dynamics

by Peter Van Besselaar Andrea Scharnhorst Katy Börner

Models of Science Dynamics aims to capture the structure and evolution of science, the emerging arena in which scholars, science and the communication of science become themselves the basic objects of research. In order to capture the essence of phenomena as diverse as the structure of co-authorship networks or the evolution of citation diffusion patterns, such models can be represented by conceptual models based on historical and ethnographic observations, mathematical descriptions of measurable phenomena, or computational algorithms. Despite its evident importance, the mathematical modeling of science still lacks a unifying framework and a comprehensive study of the topic. This volume fills this gap, reviewing and describing major threads in the mathematical modeling of science dynamics for a wider academic and professional audience. The model classes presented cover stochastic and statistical models, system-dynamics approaches, agent-based simulations, population-dynamics models, and complex-network models. The book comprises an introduction and a foundational chapter that defines and operationalizes terminology used in the study of science, as well as a review chapter that discusses the history of mathematical approaches to modeling science from an algorithmic-historiography perspective. It concludes with a survey of remaining challenges for future science models and their relevance for science and science policy.

Models of Technologies (Lecture Notes in Networks and Systems #86)

by Mikhail V. Belov Dmitry A. Novikov

This book presents the methodology of complex activity with a set of interconnected mathematical models that describe the processes of technology design, adoption and use.It first discusses the technology of complex activity and its general models. The second chapter then introduces models of the processes of technology design and adoption, while Chapter 3 focuses on technology management models are presented in. Lastly, Chapter 4 examines analytical complexity and errors in solving technology design/optimization problems. This book is intended for experts and researchers interested in the general principles of activity organization and control of complex organizational and technical systems.

Models of Tree and Stand Dynamics: Theory, Formulation and Application

by Harry T. Valentine Annikki Mäkelä

The book is designed to be a textbook for university students (MSc-PhD level) and a reference for researchers and practitioners. It is an introduction to dynamic modelling of forest growth based on ecological theory but aiming for practical applications for forest management under environmental change. It is largely based on the work and research findings of the authors, but it also covers a wide range of literature relevant to process-based forest modelling in general. The models presented in the book also serve as tools for research and can be elaborated further as new research findings emerge. The material in the book is arranged such that the student starts from basic concepts and formulations, then moves towards more advanced theories and methods, finally learning about parameter estimation, model testing, and practical application. Exercises with solutions and hands-on R-code are provided to help the student digest the concepts and become proficient with the methods. The book should be useful for both forest ecologists who want to become modellers, and for applied mathematicians who want to learn about forest ecology. The basic concepts and theory are formulated in the first four chapters, including a review of traditional descriptive forest models, basic concepts of carbon balance modelling applied to trees, and theories and models of tree and forest structure. Chapter 5 provides a synthesis in the form of a core model which is further elaborated and applied in the subsequent chapters. The more advanced theories and methods in Chapters 6 and 7 comprise aspects of competition through tree interactions, and eco-evolutionary modelling, including optimisation and game theory, a topical and fast developing area of ecological modelling under climate change. Chapters 8 and 9 are devoted to parameter estimation and model calibration, showing how empirical and process-based methods and related data sources can be bridged to provide reliable predictions. Chapter 10 demonstrates some practical applications and possible future development paths of the approach. The approach in this book is unique in that the models presented are based on ecological theory and research findings, yet sufficiently simple in structure to lend themselves readily to practical application, such as regional estimates of harvest potential, or satellite-based monitoring of growth. The applicability is also related to the objective of bridging empirical and process-based approaches through data assimilation methods that combine research-based ecological measurements with standard forestry data. Importantly, the ecological basis means that it is possible to build on the existing models to advance the approach as new research findings become available.

Models, Simulation, and Experimental Issues in Structural Mechanics

by Michel Frémond Franco Maceri Giuseppe Vairo

This book offers valuable insights and provides effective tools useful for imagining, creating, and promoting novel and challenging developments in structural mechanics. It addresses a wide range of topics, such as mechanics and geotechnics, vibration and damping, damage and friction, experimental methods, and advanced structural materials. It also discusses analytical, experimental and numerical findings, focusing on theoretical and practical issues and innovations in the field. Collecting some of the latest results from the Lagrange Laboratory, a European scientific research group, mainly consisting of Italian and French engineers, mechanicians and mathematicians, the book presents the most recent example of the long-term scientific cooperation between well-established French and Italian Mechanics, Mathematics and Engineering Schools. It is a valuable resource for postgraduate students, researchers and practitioners dealing with theoretical and practical issues in structural engineering.

Modern Accelerator Technologies for Geographic Information Science

by Xuan Shi Volodymyr Kindratenko Chaowei Yang

This book explores the impact of augmenting novel architectural designs with hardware‐based application accelerators. The text covers comprehensive aspects of the applications in Geographic Information Science, remote sensing and deploying Modern Accelerator Technologies (MAT) for geospatial simulations and spatiotemporal analytics. MAT in GIS applications, MAT in remotely sensed data processing and analysis, heterogeneous processors, many-core and highly multi-threaded processors and general purpose processors are also presented. This book includes case studies and closes with a chapter on future trends. Modern Accelerator Technologies for GIS is a reference book for practitioners and researchers working in geographical information systems and related fields. Advanced-level students in geography, computational science, computer science and engineering will also find this book useful.

Modern Adaptive Fuzzy Control Systems (Studies in Fuzziness and Soft Computing #421)

by Ardashir Mohammadzadeh Mohammad Hosein Sabzalian Chunwei Zhang Oscar Castillo Rathinasamy Sakthivel Fayez F. El-Sousy

This book explains the basic concepts, theory and applications of fuzzy systems in control in a simple unified approach with clear ex-amples and simulations in the MATLAB programming language. Fuzzy systems, especially, type-2 neuro-fuzzy systems, are now used extensively in various engineering fields for different purposes. In plain language, this book aims to practically explain fuzzy sys-tems and different methods of training and optimizing these systems. For this purpose, type-2 neuro-fuzzy systems are first analyzed along with various methods of training and optimizing these systems through implementation in MATLAB. These systems are then em-ployed to design adaptive fuzzy controllers. The authors aim at pre-senting all the well-known optimization methods clearly and code them in the MATLAB language.

Modern Aerodynamic Methods for Direct and Inverse Applications

by Wilson C. Chin

Just when classic subject areas seem understood, the author, a Caltech, M.I.T. and Boeing trained aerodynamicist, raises profound questions over traditional formulations. Can shear flows be rigorously modeled using simpler “potential-like” methods versus Euler equation approaches? Why not solve aerodynamic inverse problems using rapid, direct or forward methods similar to those used to calculate pressures over specified airfoils? Can transonic supercritical flows be solved rigorously without type-differencing methods? How do oscillations affect transonic mean flows, which in turn influence oscillatory effects? Or how do hydrodynamic disturbances stabilize or destabilize mean shear flows? Is there an exact approach to calculating wave drag for modern supersonic aircraft? This new book, by a prolific fluid-dynamicist and mathematician who has published more than twenty research monographs, represents not just another contribution to aerodynamics, but a book that raises serious questions about traditionally accepted approaches and formulations – and provides new methods that solve longstanding problems of importance to the industry. While both conventional and newer ideas are discussed, the presentations are readable and geared to advanced undergraduates with exposure to elementary differential equations and introductory aerodynamics principles. Readers are introduced to fundamental algorithms (with Fortran source code) for basic applications, such as subsonic lifting airfoils, transonic supercritical flows utilizing mixed differencing, models for inviscid shear flow aerodynamics, and so on – models they can extend to include newer effects developed in the second half of the book. Many of the newer methods have appeared over the years in various journals and are now presented with deeper perspective and integration. This book helps readers approach the literature more critically. Rather than simply understanding an approach, for instance, the powerful “type differencing” behind transonic analysis, or the rationale behind “conservative” formulations, or the use of Euler equation methods for shear flow analysis when they are unnecessary, the author guides and motivates the user to ask why and why not and what if. And often, more powerful methods can be developed using no more than simple mathematical manipulations. For example, Cauchy-Riemann conditions, which are powerful tools in subsonic airfoil theory, can be readily extended to handle compressible flows with shocks, rotational flows, and even three-dimensional wing flowfields, in a variety of applications, to produce powerful formulations that address very difficult problems. This breakthrough volume is certainly a “must have” on every engineer’s bookshelf.

Modern Age Waste Water Problems: Solutions Using Applied Nanotechnology

by Mohammad Oves Mohammad Omaish Ansari Mohammad Zain Khan Mohammad Shahadat Iqbal M.I. Ismail

This book presents a picture of the advances in the research of theoretical and practical frameworks of wastewater problems and solutions. The book deals with a basic concept and principles of modern biological, chemical and technical approaches to remediate various hazardous pollutants from wastewater. The latest empirical research findings in wastewater treatment are comprehensively discussed. Examples of low-cost technologies are also included.The book is written for professionals, researchers, academics and students wanting to improve their understanding of the strategic role of environmental protection and advanced applied technologies.

Modern Antenna Handbook

by Constantine A. Balanis

The most up-to-date, comprehensive treatment of classical and modern antennas and their related technologies Modern Antenna Handbook represents the most current and complete thinking in the field of antennas. The handbook is edited by one of the most recognizable, prominent, and prolific authors, educators, and researchers on antennas and electromagnetics. Each chapter is authored by one or more leading international experts and includes cover-age of current and future antenna-related technology. The information is of a practical nature and is intended to be useful for researchers as well as practicing engineers. From the fundamental parameters of antennas to antennas for mobile wireless communications and medical applications, Modern Antenna Handbook covers everything professional engineers, consultants, researchers, and students need to know about the recent developments and the future direction of this fast-paced field. In addition to antenna topics, the handbook also covers modern technologies such as metamaterials, microelectromechanical systems (MEMS), frequency selective surfaces (FSS), and radar cross sections (RCS) and their applications to antennas, while five chapters are devoted to advanced numerical/computational methods targeted primarily for the analysis and design of antennas.

Modern Anti-windup Synthesis: Control Augmentation for Actuator Saturation (Princeton Series in Applied Mathematics #38)

by Luca Zaccarian Andrew R. Teel

This book provides a wide variety of state-space--based numerical algorithms for the synthesis of feedback algorithms for linear systems with input saturation. Specifically, it addresses and solves the anti-windup problem, presenting the objectives and terminology of the problem, the mathematical tools behind anti-windup algorithms, and more than twenty algorithms for anti-windup synthesis, illustrated with examples. Luca Zaccarian and Andrew Teel's modern method--combining a state-space approach with algorithms generated by solving linear matrix inequalities--treats MIMO and SISO systems with equal ease. The book, aimed at control engineers as well as graduate students, ranges from very simple anti-windup construction to sophisticated anti-windup algorithms for nonlinear systems. Describes the fundamental objectives and principles behind anti-windup synthesis for control systems with actuator saturation Takes a modern, state-space approach to synthesis that applies to both SISO and MIMO systems Presents algorithms as linear matrix inequalities that can be readily solved with widely available software Explains mathematical concepts that motivate synthesis algorithms Uses nonlinear performance curves to quantify performance relative to disturbances of varying magnitudes Includes anti-windup algorithms for a class of Euler-Lagrange nonlinear systems Traces the history of anti-windup research through an extensive annotated bibliography

Modern Applications of Geotechnical Engineering and Construction: Geotechnical Engineering and Construction (Lecture Notes in Civil Engineering #112)

by Mahdi O. Karkush Deepankar Choudhury

This book contains select papers from the International Conference on Geotechnical Engineering Iraq discussing the challenges, opportunities, and problems of application of geotechnical engineering in projects. The contents cover a wide spectrum of themes in geotechnical engineering, including but not limited to sustainability & geotechnical engineering, modeling of foundations & slope stability, seismic analysis & soil mechanics, construction materials, and construction & management of projects. This volume will prove a valuable resource for practicing engineers and researchers in the field of geotechnical engineering, structural engineering, and construction and management of projects.^

Modern Applications of Lanthanide Luminescence (Springer Series on Fluorescence #19)

by Ana de Bettencourt-Dias

This volume builds upon the successful book Lanthanide Luminescence published in the Springer Series on Fluorescence in 2011. Since its publication, the field of lanthanide spectroscopy and the areas in which the light emission properties of the f-elements are used have experienced substantial advances. The luminescence properties of lanthanide ions make them unique candidates for a myriad of optical applications. This book highlights and reviews the latest research in areas ranging from luminescence thermometry to imaging, sensing and photonic applications of these fascinating elements. Each chapter provides a comprehensive introduction to a specific area of application of lanthanide luminescence and extensively reviews seminal papers and current research literature. Given its interdisciplinary scope, the book appeals to scientists and advanced students in physics, chemistry and materials science interested in compounds and materials with optical properties.

Modern Approach to Educational Data Mining and Its Applications (SpringerBriefs in Applied Sciences and Technology)

by Soni Sweta

This book emphasizes that learning efficiency of the learners can be increased by providing personalized course materials and guiding them to attune with suitable learning paths based on their characteristics such as learning style, knowledge level, emotion, motivation, self-efficacy and many more learning ability factors in e-learning system. Learning is a continuous process since human evolution. In fact, it is related to life and innovations. The basic objective of learning to grow, aspire and develop ease of life remains the same despite changes in the learning methodologies. Introduction of computers empowered us to attain new zenith in knowledge domain, developed pragmatic approach to solve life’s problem and helped us to decipher different hidden patterns of data to get new ideas. Of late, computers are predominantly used in education. Its process has been changed from offline to online in view of enhancing the ease of learning. With the advent of information technology, e-learning has taken centre stage in educational domain. In e-learning context, developing adaptive e-learning system is buzzword among contemporary research scholars in the area of Educational Data Mining (EDM). Enabling personalized systems is meant for improvement in learning experience for learners as per their choices made or auto-detected needs. It helps in enhancing their performance in terms of knowledge, skills, aptitudes and preferences. It also enables speeding up the learning process qualitatively and quantitatively. These objectives are met only by the Personalized Adaptive E-learning Systems in this regard. Many noble frameworks were conceptualized, designed and developed to infer learning style preferences, and accordingly, learning materials were delivered adaptively to the learners. Designing frameworks help to measure learners’ preferences minutely and provide adaptive learning materials to them in a way most appropriately.

Modern Approaches in IoT and Machine Learning for Cyber Security: Latest Trends in AI (Internet of Things)

by Vinit Gunjan Mohd Ansari Mohammed Usman ThiDieuLinh Nguyen

This book examines the cyber risks associated with Internet of Things (IoT) and highlights the cyber security capabilities that IoT platforms must have in order to address those cyber risks effectively. The chapters fuse together deep cyber security expertise with artificial intelligence (AI), machine learning, and advanced analytics tools, which allows readers to evaluate, emulate, outpace, and eliminate threats in real time. The book’s chapters are written by experts of IoT and machine learning to help examine the computer-based crimes of the next decade. They highlight on automated processes for analyzing cyber frauds in the current systems and predict what is on the horizon. This book is applicable for researchers and professionals in cyber security, AI, and IoT.

Modern Approaches in Machine Learning and Cognitive Science: Latest Trends in AI (Studies in Computational Intelligence #885)

by G. R. Gangadharan Vinit Kumar Gunjan Jacek M. Zurada Balasubramanian Raman

This book discusses various machine learning & cognitive science approaches, presenting high-throughput research by experts in this area. Bringing together machine learning, cognitive science and other aspects of artificial intelligence to help provide a roadmap for future research on intelligent systems, the book is a valuable reference resource for students, researchers and industry practitioners wanting to keep abreast of recent developments in this dynamic, exciting and profitable research field. It is intended for postgraduate students, researchers, scholars and developers who are interested in machine learning and cognitive research, and is also suitable for senior undergraduate courses in related topics. Further, it is useful for practitioners dealing with advanced data processing, applied mathematicians, developers of software for agent-oriented systems and developers of embedded and real-time systems.

Modern Approaches in Machine Learning and Cognitive Science: Latest Trends in AI, Volume 2 (Studies in Computational Intelligence #956)

by Vinit Kumar Gunjan Jacek M. Zurada

This book provides a systematic and comprehensive overview of machine learning with cognitive science methods and technologies which have played an important role at the core of practical solutions for a wide scope of tasks between handheld apps, industrial process control, autonomous vehicles, environmental policies, life sciences, playing computer games, computational theory, and engineering development. The chapters in this book focus on readers interested in machine learning, cognitive and neuro-inspired computational systems – theories, mechanisms, and architecture, which underline human and animal behaviour, and their application to conscious and intelligent systems. In the current version, it focuses on the successful implementation and step-by-step explanation of practical applications of the domain. It also offers a wide range of inspiring and interesting cutting-edge contributions to applications of machine learning and cognitive science such as healthcare products, medical electronics, and gaming. Overall, this book provides valuable information on effective, cutting-edge techniques and approaches for students, researchers, practitioners, and academicians working in the field of AI, neural network, machine learning, and cognitive science. Furthermore, the purpose of this book is to address the interests of a broad spectrum of practitioners, students, and researchers, who are interested in applying machine learning and cognitive science methods in their respective domains.

Refine Search

Showing 39,226 through 39,250 of 64,229 results