Browse Results

Showing 41,376 through 41,400 of 72,392 results

Materials (Mitchell's Building Series)

by Alan Everett C. M. Barritt

A well-known and respected standard reference, this fifth edition provides a thorough treatment of the properties of building materials and their manufacture, both on-site and in the factory.

Materials and Acoustics Handbook

by Michel Bruneau Catherine Potel

Written by a group of acoustics and vibration specialists, this book studies the acoustic and vibrating phenomena that occur in diverse materials used for all kinds of purposes. The first part studies the fundamental aspects of propagation: analytical, numerical and experimental. The second part outlines industrial and medical applications. Covering a wide range of topics that associate materials science with acoustics, this will be of invaluable use to researchers, engineers, or practitioners in this field, as well as students in acoustics, physics, and mechanics.

Materials and Dematerialization: Making the Modern World

by Vaclav Smil

MATERIALS AND DEMATERIALIZATION World-renowned scientist Vaclav Smil examines a critical topic in the research and policy domain of sustainable resource use Over the course of time, the modern world has become dependent on unprecedented flows of materials. Now even the most efficient production processes and the highest practical rates of recycling may not be enough to result in dematerialization rates that would be high enough to negate the rising demand for materials generated by continuing population growth and rising standards of living. Materials and Dematerialization considers the principal materials used throughout history, from wood and stone, through to metals, alloys, plastics and silicon, describing their extraction and production as well as their dominant applications. The evolving productivities of material extraction, processing, synthesis, finishing and distribution, and the energy costs and environmental impact of rising material consumption are examined in detail, along with the relationship between socio-economic development and resource use, including major technological and innovation aspects. The book concludes with an outlook for the future, discussing the prospects for dematerialization, potential constraints on materials, and an updated appraisal of material requirements and prospects during the coming decades. Building on the success of his 2013 book, Vaclav Smil has thoroughly revised this landmark text to highlight advances that have taken place over the last decade, including a thorough review of statistics and references to 2022. This updated edition also includes new content to explicitly address material for global energy transition and for securing food for a still growing global population. Praise for the 1st edition “Vaclav Smil keeps turning out amazing books. Making the Modern World, I just finished, and it’s pretty fantastic.” (Interview with Bill Gates, January 2014)

Materials and Electro-mechanical and Biomedical Devices Based on Nanofibers (CISM International Centre for Mechanical Sciences #611)

by Alexander L. Yarin Filippo Pierini Eyal Zussman Marco Lauricella

The book is interwoven according to the intrinsic logics of modern most important applications of electrospun nanofibers. It discusses such application-oriented nanofibers as self-healing vascular nanotextured materials, biopolymer nanofibers, soft robots and actuators based on nanofibers, biopolymer nanofiber-based triboelectric nanogenerators, metallized nanofibers, and heaters and sensors based on them. It also includes such topics as the injectable nanofibrous biomaterials, fibrous hemostatic agents and their interaction with blood, as well as electrospun nanofibers for face-mask applications. The book also details polyelectrolytes-based complex nanofibers and their use as actuators. It also covers drug release facilitated by polyelectrolytes-based complex nanofibers. The fundamental aspects of electrospinning of polymer nanofibers discussed in the final part of the book link them to the applications described in the preceding chapters. Such topics as polymer solution preparation and their rheological properties, e.g., viscoelasticity and the related spinnability, the electrical conductivity of polymer solutions, and the cascade of the physical phenomena resulting in formation of nanofibers encompass the experimental aspects. Also, the general quasi-1D equations used for modeling of formation of electrospun polymer nanofibers, and the numerical aspects of their solution are discussed in detail, including such modeling-driven applications as nanofiber alignment by electric focusing fields.

Materials and Expertise in Early Modern Europe: Between Market and Laboratory

by Ursula Klein E. C. Spary

It is often assumed that natural philosophy was the forerunner of early modern natural sciences. But where did these sciences' systematic observation and experimentation get their starts? In Materials and Expertise in Early Modern Europe, the laboratories, workshops, and marketplaces emerge as arenas where hands-on experience united with higher learning. In an age when chemistry, mineralogy, geology, and botany intersected with mining, metallurgy, pharmacy, and gardening, materials were objects that crossed disciplines. Here, the contributors tell the stories of metals, clay, gunpowder, pigments, and foods, and thereby demonstrate the innovative practices of technical experts, the development of the consumer market, and the formation of the observational and experimental sciences in the early modern period. Materials and Expertise in Early Modern Europe showcases a broad variety of forms of knowledge, from ineffable bodily skills and technical competence to articulated know-how and connoisseurship, from methods of measuring, data gathering, and classification to analytical and theoretical knowledge. By exploring the hybrid expertise involved in the making, consumption, and promotion of various materials, and the fluid boundaries they traversed, the book offers an original perspective on important issues in the history of science, medicine, and technology.

Materials and Failures in MEMS and NEMS

by Atul Tiwari Baldev Raj

The fabrication of MEMS has been predominately achieved by etching the polysilicon material. However, new materials are in large demands that could overcome the hurdles in fabrication or manufacturing process. Although, an enormous amount of work being accomplished in the area, most of the information is treated as confidential or privileged. It is extremely hard to find the meaningful information for the new or related developments. This book is collection of chapters written by experts in MEMS and NEMS technology. Chapters are contributed on the development of new MEMS and NEMS materials as well as on the properties of these devices. Important properties such as residual stresses and buckling behavior in the devices are discussed as separate chapters. Various models have been included in the chapters that studies the mode and mechanism of failure of the MEMS and NEMS. This book is meant for the graduate students, research scholars and engineers who are involved in the research and developments of advanced MEMS and NEMS for a wide variety of applications. Critical information has been included for the readers that will help them in gaining precise control over dimensional stability, quality, reliability, productivity and maintenance in MEMS and NEMS. No such book is available in the market that addresses the developments and failures in these advanced devices.

Materials and Infrastructures 1

by Jean-Michel Torrenti Francesca La Torre

'Materials and Infrastructures 1 and 2' are complementary books presenting the topic of Materials and Infrastructures, investigating geotechnical issues, and pavement materials' characterization, innovative materials, technologies and processes, and introducing new techniques and approaches for auscultation and monitoring. Solutions to increase the durability of infrastructures and to improve maintenance and repair are shown, for recycling as well as for ensuring the sustainability of the infrastructures. Specific railways and inland navigation issues are addressed. A focus is put on climate resilient roads.

Materials and Infrastructures 2

by Francesca La Torre Jean-Michel Torrenti

'Materials and Infrastructures 1 and 2' are complementary books presenting the topic of Materials and Infrastructures, investigating geotechnical issues, and pavement materials' characterization, innovative materials, technologies and processes, and introducing new techniques and approaches for auscultation and monitoring. Solutions to increase the durability of infrastructures and to improve maintenance and repair are shown, for recycling as well as for ensuring the sustainability of the infrastructures. Specific railways and inland navigation issues are addressed. A focus is put on climate resilient roads.

Materials and Manufacturing Capabilities for Sustaining Defense Systems

by Defense Materials Manufacturing and Infrastructure Standing Committee National Research Council Division on Engineering and Physical Sciences Robert J. Katt

The Standing Committee on Defense Materials Manufacturing and Infrastructure (DMMI) conducted a workshop on July 23-24, 2012, to share information and gather perspectives on issues concerning Materials and Manufacturing Capabilities for Sustaining Defense Systems. This workshop, held at the headquarters building of the National Academies, 2101 Constitution Avenue N.W., Washington D.C., was conducted according to the procedures of the National Research Council (NRC) for a convening activity. That is, all workshop participants--including presenters, members of the DMMI standing committee, Reliance 21, invited guests, and visitors--spoke as individuals, and no overall findings, conclusions, or recommendations were developed during or as a result of the workshop. All statements and views summarized in this publication are attributable only to those individuals who expressed them. It is worth noting that the sponsor, Reliance 21, is a Department of Defense group of professionals that was established to enable the DOD science and technology (S&T) community to work together to enhance Defense S&T programs, eliminate unwarranted duplication, and strengthen cooperation among the military services and other DOD agencies. The DMMI standing committee named a workshop planning group to develop the workshop agenda and decide on invited guests and presenters, in accordance with the statement of task approved by the Governing Board of the NRC. The planning group also consulted with the Reliance 21 materials and processing community of interest. The presentations and discussions during the workshop are summarized sequentially in the main part of this report. As an aid to readers, nine themes have been identified by the author that recurred in multiple presentations and discussions. Materials and Manufacturing Capabilities for Sustaining Defense Systems: Summary of a Workshop explains these nine themes and summarizes the two day workshop.

Materials and Manufacturing Processes (Materials Forming, Machining and Tribology #86)

by Kaushik Kumar Hridayjit Kalita Divya Zindani J. Paulo Davim

This book introduces the materials and traditional processes involved in the manufacturing industry. It discusses the properties and application of different engineering materials as well as the performance of failure tests. The book lists both destructible and non-destructible processes in detail. The design associated with each manufacturing processes, such Casting, Forming, Welding and Machining, are also covered.

Materials and Methods for Industrial Wastewater and Groundwater Treatment

by S. K. Nataraj

An expert synthesis of the latest materials and methods with applications for groundwater and wastewater treatment Materials and Methods for Industrial Wastewater and Groundwater Treatment delivers an up-to-date discussion of the materials and methods being used to address the problem of pollutants in industrial wastewaters and groundwater. The book describes innovative new materials with significant potential to emerge as a next-generation solution in the water treatment space. Cutting-edge research is synthesized into these novel materials and methods and case studies demonstrate real-world applications of new solutions for water treatment. Readers will also find: A thorough introduction to new materials and techniques for treating wastewater and groundwater to remove pollutantsComprehensive explorations of the latest research on commercially viable methods for treating wastewater and groundwaterCase studies highlighting the practical application of novel methods and materials as next-generation solutions for water treatment Perfect for industrial chemists, environmental and material researchers and supervisors, and consulting and design engineers in wastewater treatment plants, Materials and Methods for Industrial Wastewater and Groundwater Treatment will also benefit design professionals, materials scientists, and environmental engineers with an interest in nanomaterial applications to wastewater treatments.

Materials and Process Selection for Engineering Design

by Mahmoud M. Farag

Introducing a new engineering product or changing an existing model involves developing designs, reaching economic decisions, selecting materials, choosing manufacturing processes, and assessing environmental impact. These activities are interdependent and should not be performed in isolation from each other. This is because the materials and processes used in making a product can have a major influence on its design, cost, and performance in service. This Fourth Edition of the best-selling Materials and Process Selection for Engineering Design takes all of this into account and has been comprehensively revised to reflect the many advances in the fields of materials and manufacturing, including: Increasing use of additive manufacturing technology, especially in biomedical, aerospace and automotive applications Emphasizing the environmental impact of engineering products, recycling, and increasing use of biodegradable polymers and composites Analyzing further into weight reduction of products through design changes as well as material and process selection, especially in manufacturing products such as electric cars Discussing new methods for solving multi-criteria decision-making problems, including multi-component material selection as well as concurrent and geometry-dependent selection of materials and joining technology Increasing use of MATLAB by engineering students in solving problems This textbook features the following pedagogical tools: New and updated practical case studies from industry A variety of suggested topics and background information for in-class group work Ideas and background information for reflection papers so readers can think critically about the material they have read, give their interpretation of the issues under discussion and the lessons learned, and then propose a way forward Open-book exercises and questions at the end of each chapter where readers are evaluated on how they use the material, rather than how well they recall it, in addition to the traditional review questions Includes a solutions manual and PowerPoint lecture materials for adopting professors Aimed at students in mechanical, manufacturing, and materials engineering, as well as professionals in these fields, this book provides the practical know-how in order to choose the right materials and processes for development of new or enhanced products.

Materials and Processes

by Barrie D. Dunn

The objective of this book is to assist scientists and engineers select the ideal material or manufacturing process for particular applications; these could cover a wide range of fields, from light-weight structures to electronic hardware. The book will help in problem solving as it also presents more than 100 case studies and failure investigations from the space sector that can, by analogy, be applied to other industries. Difficult-to-find material data is included for reference. The sciences of metallic (primarily) and organic materials presented throughout the book demonstrate how they can be applied as an integral part of spacecraft product assurance schemes, which involve quality, material and processes evaluations, and the selection of mechanical and component parts. In this successor edition, which has been revised and updated, engineering problems associated with critical spacecraft hardware and the space environment are highlighted by over 500 illustrations including micrographs and fractographs. Space hardware captured by astronauts and returned to Earth from long durations in space are examined. Information detailed in the Handbook is applicable to general terrestrial applications including consumer electronics as well as high reliability systems associated with aeronautics, medical equipment and ground transportation. This Handbook is also directed to those involved in maximizing the relia bility of new materials and processes for space technology and space engineering. It will be invaluable to engineers concerned with the construction of advanced structures or mechanical and electronic sub-systems.

Materials and Processes for CO2 Capture, Conversion, and Sequestration

by Winnie Wong-Ng Lan Li Kevin Huang Lawrence P. Cook

Addresses materials, technology, and products that could help solve the global environmental crisis once commercialized This multidisciplinary book encompasses state-of-the-art research on the topics of Carbon Capture and Storage (CCS), and complements existing CCS technique publications with the newest research and reviews. It discusses key challenges involved in the CCS materials design, processing, and modeling and provides in-depth coverage of solvent-based carbon capture, sorbent-based carbon capture, membrane-based carbon capture, novel carbon capture methods, computational modeling, carbon capture materials including metal organic frameworks (MOF), electrochemical capture and conversion, membranes and solvents, and geological sequestration. Materials and Processes for CO2 Capture, Conversion and Sequestration offers chapters on: Carbon Capture in Metal-Organic Frameworks; Metal Organic Frameworks Materials for Post-Combustion CO2 Capture; New Progress of Microporous Metal-Organic Frameworks in CO2 Capture and Separation; In Situ Diffraction Studies of Selected Metal-Organic Framework (MOF) Materials for Guest Capture Applications; Electrochemical CO2 Capture and Conversion; Electrochemical Valorization of Carbon Dioxide in Molten Salts; Microstructural and Structural Characterization of Materials for CO2 Storage using Multi-Scale X-Ray Scattering Methods; Contribution of Density Functional Theory to Microporous Materials for Carbon Capture; and Computational Modeling Study of MnO2 Octahedral Molecular Sieves for Carbon Dioxide Capture Applications. Addresses one of the most pressing concerns of society—that of environmental damage caused by the greenhouse gases emitted as we use fossil fuels Covers cutting-edge capture technology with a focus on materials and technology rather than regulation and cost Highlights the common and novel CCS materials that are of greatest interest to industrial researchers Provides insight into CCS materials design, processing characterization, and computer modeling Materials and Processes for CO2 Capture, Conversion and Sequestration is ideal for materials scientists and engineers, energy scientists and engineers, inorganic chemists, environmental scientists, pollution control scientists, and carbon chemists.

Materials and Processes for Solar Fuel Production

by Balasubramanian Viswanathan Vaidyanathan Ravi Subramanian Jae Sung Lee

This book features different approaches to non-biochemical pathways for solar fuel production. This one-of-a-kind book addresses photovoltaics, photocatalytic water splitting for clean hydrogen production and CO2 conversion to hydrocarbon fuel through in-depth comprehensive contributions from a select blend of established and experienced authors from across the world. The commercial application of solar based systems, with particular emphasis on non-PV based devices have been discussed. This book intends to serve as a primary resource for a multidisciplinary audience including chemists, engineers and scientists providing a one-stop location for all aspects related to solar fuel production. The material is divided into three sections: Solar assisted water splitting to produce hydrogen; Solar assisted CO2 utilization to produce green fuels and Solar assisted electricity generation. The content strikes a balance between theory, material synthesis and application with the central theme being solar fuels.

Materials and Reliability Handbook for Semiconductor Optical and Electron Devices

by Stephen J. Pearton Osamu Ueda

Materials and Reliability Handbook for Semiconductor Optical and Electron Devices provides comprehensive coverage of reliability procedures and approaches for electron and photonic devices. These include lasers and high speed electronics used in cell phones, satellites, data transmission systems and displays. Lifetime predictions for compound semiconductor devices are notoriously inaccurate due to the absence of standard protocols. Manufacturers have relied on extrapolation back to room temperature of accelerated testing at elevated temperature. This technique fails for scaled, high current density devices. Device failure is driven by electric field or current mechanisms or low activation energy processes that are masked by other mechanisms at high temperature. The Handbook addresses reliability engineering for III-V devices, including materials and electrical characterization, reliability testing, and electronic characterization. These are used to develop new simulation technologies for device operation and reliability, which allow accurate prediction of reliability as well as the design specifically for improved reliability. The Handbook emphasizes physical mechanisms rather than an electrical definition of reliability. Accelerated aging is useful only if the failure mechanism is known. The Handbook also focuses on voltage and current acceleration stress mechanisms.

Materials and Structures (Chartered Institute of Building)

by R. Whitlow

The second edition of this highly informative book retains much original material covering the principles of structural mechanics and the strength of materials, together with the underlying concepts requisite to the theory of structure and structural design. Some of the material involving lengthy hand-drawing or hand-calculation has been replaced with more up-to-date relevant material and frequent reference is made to computer-aided learning techniques.

Materials and Structures under Shock and Impact (Wiley-iste Ser.)

by Patrice Bailly

In risk studies, engineers often have to consider the consequences of an accident leading to a shock on a construction. This can concern the impact of a ground vehicle or aircraft, or the effects of an explosion on an industrial site. This book presents a didactic approach starting with the theoretical elements of the mechanics of materials and structures, in order to develop their applications in the cases of shocks and impacts. The latter are studied on a local scale at first. They lead to stresses and strains in the form of waves propagating through the material, this movement then extending to the whole of the structure. The first part of the book is devoted to the study of solid dynamics where nonlinear behaviors come into play. The second part covers structural dynamics and the evaluation of the transient response introduced at the global scale of a construction. Practical methods, simplified methods and methods that are in current use by engineers are also proposed throughout the book. The aim of this book is to present theoretical elements regarding solids and structures, as well as modeling tools in order to study the vulnerability of a structure to a short duration action, generally of accidental nature. The book takes the point of view of an engineer seeking for the modeling of the physics at stake to relevantly carry out his study. The book originality is that it gathers elements from various fields of engineering sciences, for the purpose of a practical objective.

Materials and Surface Engineering in Tribology (Wiley-iste Ser.)

by Jamal Takadoum

This title is designed to provide a clear and comprehensive overview of tribology. The book introduces the notion of a surface in tribology where a solid surface is described from topographical, structural, mechanical, and energetic perspectives. It also describes the principal techniques used to characterize and analyze surfaces. The title then discusses what may be called the fundamentals of tribology by introducing and describing the concepts of adhesion, friction, wear, and lubrication. The book focuses on the materials used in tribology, introducing the major classes of materials used, either in their bulk states or as coatings, including both protective layers and other coatings used for decorative purposes. Of especial importance to the tribology community are sections that provide the latest information on Nanotribology, Wear, Lubrication, and Wear-Corrosion: Tribocorrosion and Erosion-Corrosion.

Materials and Sustainability: Building a Circular Future

by Julia L Goldstein Paul Foulkes-Arellano

This book examines sustainable manufacturing, from the extraction of materials to processing, use, and disposal, and argues that significant changes in all of the above are needed for the world to progress toward a more circular economy.Materials and processing methods are usually chosen with performance as the key metric. Why has our society embraced plastics? Because they work. In most cases, they are lighter, easier to manufacture, and less expensive than the metal, wood, glass, or stone they have replaced. Why do industrial manufacturers use toxic chemicals? Because they are effective, but the unintended consequences may be severe. By learning how various materials are made and what happens when they are recycled, readers will better understand the value of materials and the challenges that manufacturers face when trying to make their facilities and products less toxic and less wasteful. The three chapters in Part I provide essential background about materials in the circular economy, chemicals, and waste. Part II delves into specific materials. It includes chapters on plastics, metals, wood and paper products, glass, and novel materials. Part III covers recycling and manufacturing processes, and Part IV delves into practical considerations, including the effect of regulations, concluding with a chapter that helps readers translate the information presented into action. Interviews with industry experts round out the chapters and offer valuable insights.Materials and Sustainability is a must-read for business professionals who are serious about making their companies as environmentally responsible as possible and for business and engineering students who want to begin their careers with practical knowledge about materials and their impacts.

Materials and Technologies for Future Advancement (Advanced Structured Materials #193)

by Azman Ismail Fatin Nur Zulkipli Syajaratunnur Yaakup Andreas Öchsner

This book is a platform to publish new progress in the field of materials and technologies that can offer significant developments with the possibility of changing the future. These emerging developments will change the way we live now at an unprecedented pace across our society. It is important to note that such modern developments are no longer restricted to a single discipline, but are the outcome of a multidisciplinary approach, which combines many different engineering disciplines. This book explores the new technology landscape that will have the direct impact on production-related sectors, individually and in combination with different disciplines. A major driver for this actual research is the efficiency, many times connected with a focus on environmental sustainability.

Materials and Technology for Sportswear and Performance Apparel

by Steven George Hayes Praburaj Venkatraman

Materials and Technology for Sportswear and Performance Apparel takes a close look at the design and development of functional apparel designed for high-performance sportswear. Implementing materials, performance, technology, and design and marketing, the book examines this rapidly emerging textile market and outlines future directions and growing trends. The book begins by explaining how a comfort-driven focus has led the industry to embrace knitted fabric as a popular choice of constructional material. Using examples of leading brands, it outlines the basic terminology, structural details, and essential properties appropriate for performance apparel, especially for sportswear. This book describes the differences between woven and knitted structures, provides an understanding of fabric behavior and the characteristics of a functional garment, and outlines the importance of garment fit and consumer perception of garment comfort in its design and development. The authors present key research outcomes on the design and development of functional apparel designed for high-performance sportswear that explore smart materials, impact-resistant fabrics and pressure sensing. They consider the use of 3-D body scanning and its influence on pattern engineering for apparel product development; highlight the widely used fiber types for sportswear and the importance of fiber blends and their performance, and discuss the relevance of fabric structure and its interaction with the human body. The book also presents research on moisture management and temperature regulation and analyzes the performance and development of smart sportswear intended for monitoring health and performance for a range of end uses.A definitive guide detailing the future of functional clothing and sportswear, this book: Describes how to design and develop functional clothing for sportswear Reflects current research outcomes and industry requirements Clarifies with visual illustration, practical examples, and case studies an understanding of techniques and concepts Explores specifics of garment design such as fit, shape, function, fashion and design Focuses on a commitment to designing ethical and sustainable products

Materials and Thermodynamics

by Pierre Delhaes

A thermodynamic system is defined according to its environment and its compliance. This book promotes the classification of materials from generalized thermodynamics outside the equilibrium state and not solely according to their chemical origin. The author goes beyond standard classification of materials and extends it to take into account the living, ecological, economic and financial systems in which they exist: all these systems can be classified according to their deviation from an ideal situation of thermodynamic equilibrium. The concepts of dynamic complexity and hierarchy, emphasizing the crucial role played by cycles and rhythms, then become fundamental. Finally, the limitations of the uniqueness of this description that depend on thermodynamic foundations based on the concepts of energy and entropy are discussed in relation to the cognitive sciences.

Materials and Working Mechanisms of Secondary Batteries

by Chuan-zheng Yang Yuwan Lou Jian Zhang Xiaohua Xie Baojia Xia

This book provides a description of material characterization and mechanisms of secondary batteries during discharge, cycle, and storage process. It also proposes a new intercalation/de-intercalation theory and presents the mechanism of ionic conduction. In addition, through the comparative study of variation laws of battery performance and of fine structure and microstructure parameters, the mechanism of cycle and storage processes and battery performance decay are investigated. Given its scope, the book appeals to a broad readership, particularly professionals at universities and scientific research institutes.

Materials Aspect of Thermoelectricity

by Ctirad Uher

In recent years, novel families of materials have been discovered and significant improvements in classical thermoelectric materials have been made. Thermoelectric generators are now being used to harvest industrial heat waste and convert it into electricity. This is being utilized in communal incinerators, large smelters, and cement plants. Leading car and truck companies are developing thermoelectric power generators to collect heat from the exhaust systems of gasoline and diesel engines. Additionally, thermoelectric coolers are being used in a variety of picnic boxes, vessels used to transport transplant organs, and in air-conditioned seats of mid-size cars. Consisting of twenty-one chapters written by top researchers in the field, this book explores the major advancements being made in the material aspects of thermoelectricity and provides a critical assessment in regards to the broadening of application opportunities for thermoelectric energy conversion.

Refine Search

Showing 41,376 through 41,400 of 72,392 results