- Table View
- List View
Metal-Halide Perovskite Semiconductors: From Physical Properties to Opto-electronic Devices and X-ray Sensors
by Krzysztof Kris Iniewski Wanyi NieThis book will provide readers with a good overview of some of most recent advances in the field of technology for perovskite materials. There will be a good mixture of general chapters in both technology and applications in opto-electronics, Xray detection and emerging transistor structures. The book will have an in-depth review of the research topics from world-leading specialists in the field. The authors build connections between the materials’ physical properties to the main applications such as photovoltaics, LED, FETs and X-ray sensors. They also discuss the similarities and main differences when using perovskites for those devices.
Metal-Ion Hybrid Capacitors for Energy Storage: A Balancing Strategy Toward Energy-Power Density (SpringerBriefs in Energy)
by Satyajit Ratha Aneeya Kumar SamantaraRapid growth in the research and development of clean energy storage techniques has yielded a significant number of electrochemically active compounds/materials possessing enormous potential to facilitate the fabrication of next generation devices such as the supercapacitor. This Brief describes recent progress in the field of metal-ion based hybrid electrical energy storage devices, with emphasis on the effect of different metal ions and other constituent components on the overall electrochemical performance of battery-supercapacitor hybrids (BSHs). Although significant efforts have been made to create an effective electrical energy storage system that would have the energy density of a battery and the power density of a supercapacitor, persistent challenges still lie in combining these two altogether different systems to form a cost-effective and safe storage device. Detailed comparisons of output performance and longevity (in terms of cyclic stability) are provided, including device fabrication cost and safety.Of the several proposed schematics/prototypes, hybrid supercapacitors, with both carbon-based EDLC electrode and pure faradic (battery type) electrode can work in tandem to yield high energy densities with little degradation in specific power. As a promising electric energy storage device, supercapacitors address several critical issues in various fields of applications from miniaturized electronic devices and wearable electronics to power hungry heavy automobiles. Depending on the electrode configuration and other controlling parameters, these BSHs can have contrasting performance statistics. Metal ion BSHs such as Li+, Na+, Mg+2, Zn+2 etc., acid-alkaline BSHs, and redox electrolyte based BSHs all represent recent approaches, with BSHs based on metal ions, particularly Lithium, of particular interest because of the extreme popularity of Li-ion based batteries. This book is written for a broad readership of graduate students and academic and industrial researchers who are concerned with the growth and development of sustainable energy systems where efficient and cost-effective storage is key.
Metal-Matrix Composites: Advances in Analysis, Measurement, and Observations (The Minerals, Metals & Materials Series)
by T. S. Srivatsan W. C. Harrigan Jr. Simona Hunyadi MurphThis collection brings together engineers, scientists, scholars, and entrepreneurs to present their novel and innovative contributions in the domain specific to metal-matrix composites and on aspects specific to modeling, analysis, measurements, and observations specific to microstructural advances. Topics include but are not limited to: · Metals and metal-matrix composites · Nano-metal based composites · Intermetallic-based composites Contributions in the above topics connect to applications in industry-relevant areas: automotive, energy applications, aerospace, failure analysis, biomedical and healthcare, and heavy equipment and machinery.
Metal-Matrix Composites: Advances in Processing, Characterization, Performance and Analysis (The Minerals, Metals & Materials Series)
by Pradeep K. Rohatgi T. S. Srivatsan Simona Hunyadi MurphThis collection brings together engineers, scientists, scholars, and entrepreneurs to present their novel and innovative contributions in the domain specific to metal-matrix composites and on aspects specific to processing, characterization, mechanical behavior, measurements, failure behavior, and kinetics governing microstructural influences on failure by fracture. Topics include but are not limited to: • Metals and metal-matrix composites • Nano-metal based composites • Intermetallic-based composites Contributions in the above topics connect to applications in industry-relevant areas: automotive; nuclear and clean energy; aerospace; failure analysis; biomedical and healthcare; and heavy equipment, machinery, and goods.
Metal-Organic Framework Nanocomposites: From Design to Application
by Anish Khan, Mohammad Jawaid, Abdullah Mohammed Ahmed Asiri, Wei Ni, and Mohammed Muzibur RahmanMetal-Organic Framework Nanocomposites: From Design to Application assembles the latest advances in MOF nanocomposites, emphasizing their design, characterization, manufacturing, and application and offering a wide-ranging view of these materials with exceptional physical and chemical properties. FEATURES Discusses various types of MOF materials, such as polyaniline MOF nanocomposites, magnetic MOF nanocomposites, and carbon nanotube-based MOF nanocomposites Includes chapters on the usage of these materials in pollutant removal, electrochemical devices, photocatalysts, biomedical applications, and other applications Covers different aspects of composite fabrication from energy storage and catalysts, including preparation, design, and characterization techniques Emphasizes the latest technology in the field of manufacturing and design Aimed at researchers, academics, and advanced students in materials science and engineering, this book offers a comprehensive overview and analysis of these extraordinary materials.
Metal-Organic Frameworks (MOFs) as Catalysts
by Shikha GulatiThis book highlights the state-of-the-art research and discovery in the use of MOFs in catalysis, highlighting the scope to which these novel materials have been incorporated by the community. It provides an exceptional insight into the strategies for the synthesis and functionalization of MOFs, their use as CO2 and chemical warfare agents capture, their role in bio-catalysis and applications in photocatalysis, asymmetric catalysis, nano-catalysis, etc. This book will also emphasize the challenges with previous signs of progress and way for further research, details relating to the current pioneering technology, and future perspectives with a multidisciplinary approach. Furthermore, it presents up-to-date information on the economics, toxicity, and regulations related to these novel materials.
Metal-Organic Frameworks for Photonics Applications
by Banglin Chen Guodong QianThe series Structure and Bonding publishes critical reviews on topics of research concerned with chemical structure and bonding. The scope of the series spans the entire Periodic Table and addresses structure and bonding issues associated with all of the elements. It also focuses attention on new and developing areas of modern structural and theoretical chemistry such as nanostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supramolecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. The individual volumes in the series are thematic. The goal of each volume is to give the reader, whether at a university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to a larger scientific audience. Thus each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years should be presented using selected examples to illustrate the principles discussed. A description of the physical basis of the experimental techniques that have been used to provide the primary data may also be appropriate, if it has not been covered in detail elsewhere. The coverage need not be exhaustive in data, but should rather be conceptual, concentrating on the new principles being developed that will allow the reader, who is not a specialist in the area covered, to understand the data presented. Discussion of possible future research directions in the area is welcomed. Review articles for the individual volumes are invited by the volume editors. Readership: research scientists at universities or in industry, graduate students Special offer For all customers who have a standing order to the print version of Structure and Bonding, we offer free access to the electronic volumes of the Series published in the current year via SpringerLink.
Metal-Organic Frameworks in Biomedical and Environmental Field
by Patricia Horcajada Cortés Sara Rojas MacíasThis book joins an international and interdisciplinary group of leading experts on the biomedical, energy and environmental applications of Metal-Organic Frameworks (MOFs). The resulting overview covers everything from the environmentally friendly and scale up synthesis of MOFs, their application in green energy generation and storage, and water purification to their use as drug delivery systems, biosensors, and their association with relevant macromolecules (genes, enzymes). This book is focused on the interest of MOFs in applications such as the leading –edge environmental (energy-related) and biomedical fields. The potential of MOFs in these areas is currently progressing at a fast pace, since the wide possibilities that MOFs offer in terms of composition, topology, incorporation of active species (in their porosity, on their external surface or within the framework), and post-synthetic modifications, among others. The aim here is to provide future research goals that emphasize relevant nuances to this class of materials as a whole.
Metal-Organic Frameworks-Based Hybrid Materials for Environmental Sensing and Monitoring
by Ram K. GuptaWith an unprecedented population boom and rapid industrial development, environmental pollution has become a severe problem for the ecosystem and public health. Classical techniques for sensing and determining environmental contaminants often require complex pretreatments, expensive equipment, and longer testing times. Therefore, new, and state-of-the-art sensing technologies possessing the advantages of excellent sensitivity, rapid detection, ease of use, and suitability for in situ, real-time, and continuous monitoring of environmental pollutants, are highly desirable. Metal-Organic Frameworks-based Hybrid Materials for Environmental Sensing and Monitoring covers the current-state-of-the-art hybrid nanomaterials based on metal-organic frameworks for electrochemical monitoring purposes. Accomplished authors cover various synthetic routes, methods, and theories behind enhancing the electrochemical properties and applications of metal-organic frameworks-based hybrid nanomaterials for electrochemical sensing of environmental pollutants under one roof. This book is essential reading for all academic and industrial researchers working in the fields of materials science and nanotechnology.
Metal-Polymer Systems: Interface Design and Chemical Bonding
by Jörg FriedrichThe result of decades of research by a pioneer in the field, this is the first book to deal exclusively with achieving high-performance metal-polymer composites by chemical bonding. Covering both the academic and practical aspects, the author focuses on the chemistry of interfaces between metals and polymers with a particular emphasis on the chemical bonding between the different materials. He elucidates the various approaches to obtaining a stable interface, including, but not limited to, thermodynamically driven redox reactions, bond protection to prevent hydrolysis, the introduction of barrier layers, and stabilization by spacer molecules. Throughout, chemical bonding is promoted as a simple and economically viable alternative to adhesion based on reversible weak physical interaction. Consequently, the text equips readers with the practical tools necessary for designing high-strength metal-polymer composites with such desired properties as resilience, flexibility, rigidity or degradation resistance.
Metal-Responsive Base Pair Switching of Ligand-type Uracil Nucleobases (Springer Theses)
by Keita MoriIn this thesis, the author proposes "metal-responsive base pair switching" of ligand-modified nucleobases as a novel tool for stimuli-responsive control of DNA assemblies. It is written to demonstrate broad applicability of the base pair switching in dynamic DNA nanotechnology and inspire researchers to use this technique. Based on specific interactions between ligand-type nucleobases and target metal ions, in this volume, DNA hybridization was dynamically controlled through strand displacement reactions. The base pair switching was further applied to develop metal-dependent DNA molecular machines. This novel strategy for stimuli-responsive regulation of DNA assemblies will greatly expand the scope of dynamic DNA nanotechnology. This volume uniquely features importance of elaborate molecular design based on chemistry for imparting stimuli responsiveness to DNA assemblies.
Metalanguages for Dissecting Translation Processes: Theoretical Development and Practical Applications (Routledge Advances in Translation and Interpreting Studies)
by Rei MiyataThis edited volume covers the development and application of metalanguages for concretely describing and communicating translation processes in practice. In a modern setting of project-based translation, it is crucial to bridge the gaps between various actors involved in the translation process, especially among clients, translation service providers (TSPs), translators, and technology developers. However, we have been confronted with the lack of common understanding among them about the notion and detailed mechanisms of translation. Against this backdrop, we are developing systematic, fine-grained metalanguages that are designed to describe and analyse translation processes in concrete terms. Underpinned by the rich accumulation of theoretical findings in translation studies and established standards of practical translation services, such as ISO 17100, our metalanguages extensively cover the core processes in translation projects, namely project management, source document analysis, translation, and revision. Gathering authors with diverse backgrounds and expertise, this book proffers the fruits of the contributors’ collaborative endeavour; it not only provides practicable metalanguages, but also reports on wide-ranging case studies on the application of metalanguages in practical and pedagogical scenarios. This book supplies concrete guidance for those who are involved in the translation practices and translation training/education. In addition to being of practical use, the metalanguages reflect explication of the translation process. As such, this book provides essential insights for researchers and students in the field of translation studies. The up-to-date versions of the metalanguages, related materials, and the corrigendum for the book content are available on our project website: https://tntc-project.github.io
Metalle: Struktur Und Eigenschaften Der Metalle Und Legierungen
by Erhard Hornbogen Hans Warlimont Birgit SkrotzkiDieses ausgezeichnete Standardwerk bietet eine Darstellung der Struktur und Eigenschaften der Metalle und ihrer Anwendungen als Werkstoffe. Die Autoren beschreiben im ersten, wissenschaftlichen Teil den atomaren und mikroskopischen Aufbau, die thermodynamischen und die grundlegenden physikalischen und mechanischen Eigenschaften der Metalle sowie die Grundlagen der thermisch aktivierten Reaktionen und der Phasenumwandlungen. Die wichtigsten experimentellen Untersuchungsmethoden werden erläutert, wobei die mikroskopischen und Beugungsverfahren einen Schwerpunkt bilden. Im zweiten, technischen Teil werden die Werkstoffgruppen der Metalle und ihre anwendungsbezogenen Eigenschaften behandelt. Dabei wird auf die zugrunde liegenden Legierungen und die Verfahren zur gezielten Einstellung ihrer Eigenschaften eingegangen. Schwerpunkte bei der Darstellung der Werkstoffe sind die Stähle, die teilchengehärteten Legierungen, die Magnetwerkstoffe und die pulvermetallurgisch hergestellten Werkstoffe. Außerdem werden die Oberflächeneigenschaften und die Verfahren zur Oberflächenbehandlung dargestellt. Das Buch wurde für die 6. Auflage gründlich überbearbeitet und aktualisiert und es erscheint jetzt im neuen Layout.
Metalle: Struktur und Eigenschaften der Metalle und Legierungen
by Erhard Hornbogen Hans WarlimontDieses ausgezeichnete Standardwerk bietet eine Darstellung der Struktur und Eigenschaften der Metalle und ihrer Anwendungen als Werkstoffe. Die Autoren beschreiben im ersten, wissenschaftlichen Teil den atomaren und mikroskopischen Aufbau, die thermodynamischen und die grundlegenden physikalischen und mechanischen Eigenschaften der Metalle sowie die Grundlagen der thermisch aktivierten Reaktionen und der Phasenumwandlungen. Die wichtigsten experimentellen Untersuchungsmethoden werden erl#65533;utert, wobei die mikroskopischen und Beugungsverfahren einen Schwerpunkt bilden. Im zweiten, technischen Teil werden die Werkstoffgruppen der Metalle und ihre anwendungsbezogenen Eigenschaften behandelt. Dabei wird auf die zugrunde liegenden Legierungen und die Verfahren zur gezielten Einstellung ihrer Eigenschaften eingegangen. Schwerpunkte bei der Darstellung der Werkstoffe sind die St#65533;hle, die teilchengeh#65533;rteten Legierungen, die Magnetwerkstoffe und die pulvermetallurgisch hergestellten Werkstoffe. Au#65533;erdem werden die Oberfl#65533;cheneigenschaften und die Verfahren zur Oberfl#65533;chenbehandlung dargestellt. Das Buch wurde f#65533;r die 6. Auflage gr#65533;ndlich #65533;berbearbeitet und aktualisiert und es erscheint jetzt im neuen Layout.
Metallic Amorphous Alloy Reinforcements in Light Metal Matrices
by S. Jayalakshmi M. GuptaThis book presents cutting-edge research on the design and development of novel, advanced high-strength, light-weight materials via the incorporation of novel reinforcements, namely, metallic amorphous alloys/bulk metallic glasses (BMG), in light metal matrix composites (LMMCs) based on Al and Mg. The book begins with an introduction to conventional ceramic reinforced light metal matrix composites, along with the major drawbacks which limit their application. Metallic amorphous alloys/Bulk Metallic Glasses (BMG) are new class of metallic materials that are distinctly differently from conventional metals/alloys in terms of their structure and thermal behavior, and exhibit extremely high strength (1 to 2 GPa) and large elastic strain limit (1 to 2%). Given these unique properties, upon their incorporation into Al/Mg-matrices, they provide superior interfacial properties, i. e. high degree of compatibility with the matrix due to their metallic nature when compared to conventional ceramic reinforcements, and thereby significantly enhance the mechanical performance of LMMCs. Amorphous/BMG reinforced LMMCs is an emerging research field and the existing literature is meager. This book discusses the various processing methods that would be suitable for these novel materials. A comparison of mechanical properties and strengthening mechanisms of amorphous/BMG reinforced composites with those of conventional ceramic composites is presented. Future research directions and wider research potential of the novel materials are discussed, and prospective applications are highlighted. For ease of understanding and comparison, appropriate schematics, tables, and figures are provided.
Metallic Biomaterials: Metals for Medical Devices
by Takao HanawaMetallic materials are used in many medical devices due to their high mechanical reliability and their excellent strength and toughness. They account for more than 70% of internally implantable devices (implants). This book helps understand the necessity and problems of metal materials used in medical applications. This book was written with the goal of helping students learn the essentials of metallic biomaterials and acquire knowledge that can be applied in a progressive manner. The target audience for this book are students, graduate students, engineers, medical doctors, and others who need knowledge about metallic biomaterials.
Metallic Biomaterials: New Directions and Technologies
by Hong Cai Jun-Qiang Wang Xiaoxue Xu Yufeng Zheng Zhigang XuWith its comprehensive coverage of recent progress in metallic biomaterials, this reference focuses on emerging materials and new biofunctions for promising applications. The text is systematically structured, with the information organized according to different material systems, and concentrates on various advanced materials, such as anti-bacterial functionalized stainless steel, biodegradable metals with bioactivity, and novel structured metallic biomaterials. Authors from well-known academic institutes and with many years of clinical experience discuss all important aspects, including design strategies, fabrication and modification techniques, and biocompatibility.
Metallic Glass-Based Nanocomposites: Molecular Dynamics Study of Properties
by Sumit SharmaMetallic Glass-Based Nanocomposites: Molecular Dynamics Study of Properties provides readers with an overview of the most commonly used tools for MD simulation of metallic glass composites and provides all the basic steps necessary for simulating any material on Materials Studio. After reading this book, readers will be able to model their own problems on this tool for predicting the properties of metallic glass composites. This book provides an introduction to metallic glasses with definitions and classifications, provides detailed explanations of various types of composites, reinforcements and matrices, and explores the basic mechanisms of reinforcement-MG interaction during mechanical loading. It explains various models for calculating the thermal conductivity of metallic glass composites and provides examples of molecular dynamics simulations. Aimed at students and researchers, this book caters to the needs of those working in the field of molecular dynamics (MD) simulation of metallic glass composites.
Metallic Micro and Nano Materials
by Masumi SakaThis book focuses on the metallic Nano- and Micro-materials (NMMs) fabricated by physical techniques such as atomic diffusion. A new technology for fabricating NMMs by atomic diffusion is presented. Two kinds of atomic diffusion are treated; one is a phenomenon caused by electron flow in high density and called electromigration and the other is stress migration which depends on a gradient of hydrostatic stress in a material. In three parts, the book describes the theory of atomic diffusion, the evaluation of physical properties and the treatment and applications of metallic NNMS. The new methods such as atomic diffusion are expected are expected to be crucial for the fabrication of NNMs in the future and to partially replace methods based on chemical reactions.
Metallic Nanocrystallites and their Interaction with Microbial Systems
by Anil K. SureshAlthough interactions between nanoparticles and microorganisms in the environment are unavoidable and commonplace, it is still not clear what potential effects they may have. Metallic Nanocrystallites and their Interface with Microbial Systems not only illustrates how microbes and these particular nanoparticles interact but also it describes the consequences of these interactions. This brief discusses the impact of gold, silver, zinc oxide, and cerium oxide nanoparticles on the growth and viability of both Gram-negative and Gram-positive bacterium. Moreover, it analyses the relationship between bacterial growth inhibition, reactive oxygen species generation, the regulation of transcriptional stress genomes, and the toxicity of these materials. Finally, it reviews the specific metallic nanomaterials and highlights their modes of synthesis, reactivity at surfaces, and the importance of assay procedures in determining their toxicity levels. Various microscopy techniques used to determine their mechanisms of action are also presented. Metallic Nanocrystallites and their Interface with Microbial Systems will be a valuable source to the scientific and industrial community as well as to students and researchers in microbiology, biotechnology, nanotechnology, toxicology, materials science, biomedical engineering, cell and molecular biology.
Metallic Nanoparticles for Health and the Environment (Advances in Bionanotechnology)
by Md Sabir Alam Md Noushad Javed Jamilur R. AnsariMetallic Nanoparticles for Health and the Environment covers different routes of synthesis for metallic nanoparticles and their process variables. Both the functions and roles of these particles as a drug delivery system and diagnostic agent and other potential theranostic purposes against metabolic disorders, photocatalysis applications, as well as wastewater treatments, are discussed. The book compares the different properties of bulk metallic forms and their nanoparticulated forms. It discusses the mechanisms and impacts of different process variables in different synthesis routes, as well as emerging trends in clinics and so forth. Features: Covers different routes of synthesis to create metallic nanoparticles (MNPs) of different characteristics with reference to bulk forms of metals. Describes formulation parameters that have a significant effect on these MNPs including dimensions, morphology, mechanism, surface properties, and other characteristics. Discusses different roles and performances of MNPs in photothermal therapy, metabolic disorders, mechanisms in bacterial, fungal, and viral infections, and inflammatory pathways. Reviews the potential and emerging roles of different MNPs with site target delivery applications and genetic manipulation purposes. Examines the advantages and challenges of these MNPs against remediation of pollutants and toxicants, owing to their superior surface catalytic activities. This book is aimed at researchers and professionals in nanomaterials, pharmaceuticals, and drug delivery.
Metallic Nanostructures
by Yujie Xiong Xianmao LuThis book details the design for creation of metal nanomaterials with optimal functionality for specific applications. The authors describe how to make desired metal nanomaterials in a wet lab. They include an overview of applications metal nanomaterials can be implemented in and address the fundamentals in the controlled synthesis of metal nanostructures.
Metallic Powders for Additive Manufacturing: Science and Applications
by James F. Shackelford Kaka Ma Enrique J. Lavernia Julie M. Schoenung Baolong ZhengMetallic Powders for Additive Manufacturing Overview of successful pathways for producing metal powders for additive manufacturing of high-performance metallic parts and components with tailored properties Metallic Powders for Additive Manufacturing introduces the readers to the science and technology of atomized metal powders beyond empirical knowledge and the fundamental relationships among the chemistry, microstructure, and morphology of atomized metallic powders and their behavior during additive manufacturing. The text sets a foundation of the underlying science that controls the formation and microstructure of atomized metallic droplets, including the relations among the properties of metallic powders, their performance during the manufacturing processes, and the resulting products. Other topics covered include the influence of powder on defect formation, residual stress, mechanical behavior, and physical properties. The concluding two chapters encompass considerations of broader societal implications and overarching themes, including the exploration of alternative feedstock materials, economic analysis, and sustainability assessment. These chapters offer valuable perspectives on the prospective trajectory of the field. Written by a team of experienced and highly qualified professors and academics, Metallic Powders for Additive Manufacturing includes information on: Atomization techniques such as Vacuum Induction Gas Atomization (VIGA), Electrode Induction Melting Gas Atomization (EIMGA), and Plasma Rotating Electrode Process (PREP) Atomization science and technology, covering control of atomization parameters, powder size distribution, effect of processing variables, and theoretical models of atomization Heat transfer and solidification of droplets, covering nucleation, microstructure development, and important thermal and solidification conditions during atomization Atomization of Al, Fe, Ni, Co, Ti, and high entropy alloys, as well as composite powders for additive manufacturing, and guidelines for atomization equipment and powder handling Fundamental processing principles in a variety of metal additive manufacturing processes Powder characteristics and requirements for different additive manufacturing processes Effect of powder chemistry and physical characteristics on additive manufacturing processes, and the microstructure and properties of the built parts Evaluation of alternative feedstock sources for metal additive manufacturing, beyond gas atomized powder Economic and sustainability perspectives on powder production and additive manufacturing Metallic Powders for Additive Manufacturing is an excellent combination of rigorous fundamentals and a practice-oriented and forward-looking resource on the subject for materials scientists and practicing engineers seeking to understand, optimize, and further develop the field of powder production and additive manufacturing.
Metallic Resources 1: Geodynamic Framework and Remarkable Examples in Europe
by Sophie DecréeMetallic resources play a huge role in many fields: in the energy transition, the development of new technologies and the production and storage of green energy. Metallic Resources 1 presents various studies in notable European metallogenic regions or deposits that enable us to tackle the question of the concentration of metals, especially strategic metals, in various geodynamic settings. An understanding of the geological processes that lead to the formation of deposits and influence their concentrations in the Earth's crust is of the utmost importance when it comes to uncovering new mineral resources. This book puts forward various different methodological approaches necessary in the study of deposits of metallic resources, from field observations to microanalysis. A study of specific geo-politico-economic frameworks is also presented.
Metallic Resources 2: Geodynamic Framework and Remarkable Examples in the World
by Sophie DecréeMetallic resources play a huge role in many fields: in the energy transition, the development of new technologies and the production and storage of green energy. Metallic Resources 2 presents various studies in notable metallogenic regions or deposits worldwide that enable us to tackle the question of the concentration of metals, especially strategic metals, in various geodynamic settings. An understanding of the geological processes that lead to the formation of deposits and influence their concentrations in the Earth's crust is of the utmost importance when it comes to uncovering new mineral resources. This book puts forward various different methodological approaches necessary in the study of deposits of metallic resources, from field observations to microanalysis. A study of specific geo-politico-economic frameworks is also presented.