- Table View
- List View
A Mathematical Introduction to Compressive Sensing (Applied and Numerical Harmonic Analysis)
by Holger Rauhut Simon FoucartFilling a significant gap in the literature, A Mathematical Introduction to Compressive Sensing is the first work entirely devoted to the thriving field of compressive sensing. The book clearly and comprehensively presents the essential theory of compressive sensing from a mathematical perspective. Featuring a substantial number of exercises with hints to solutions, as well as MATLAB codes for algorithms and simulations, the work is well suited for graduate courses on the subject. With only moderate mathematical prerequisites, this volume is a reliable resource for graduate students, practioners, and researchers in engineering, computer science, and mathematics looking to acquire a careful understanding of compressive sensing.
A Mathematical Introduction to Robotic Manipulation
by Richard M. Murray Zexiang Li S. Shankar SastryA Mathematical Introduction to Robotic Manipulation presents a mathematical formulation of the kinematics, dynamics, and control of robot manipulators. It uses an elegant set of mathematical tools that emphasizes the geometry of robot motion and allows a large class of robotic manipulation problems to be analyzed within a unified framework. The foundation of the book is a derivation of robot kinematics using the product of the exponentials formula. The authors explore the kinematics of open-chain manipulators and multifingered robot hands, present an analysis of the dynamics and control of robot systems, discuss the specification and control of internal forces and internal motions, and address the implications of the nonholonomic nature of rolling contact are addressed, as well. The wealth of information, numerous examples, and exercises make A Mathematical Introduction to Robotic Manipulation valuable as both a reference for robotics researchers and a text for students in advanced robotics courses.
Mathematical Methods and Modelling in Applied Sciences (Lecture Notes in Networks and Systems #123)
by Hari M. Srivastava Hemen Dutta Mehmet Zeki Sarıkaya Ahmet Ocak AkdemirThis book presents a collection of original research papers from the 2nd International Conference on Mathematical and Related Sciences, held in Antalya, Turkey, on 27 – 30 April 2019 and sponsored/supported by Düzce University, Turkey; the University of Jordan; and the Institute of Applied Mathematics, Baku State University, Azerbaijan. The book focuses on various types of mathematical methods and models in applied sciences; new mathematical tools, techniques and algorithms related to various branches of applied sciences; and important aspects of applied mathematical analysis. It covers mathematical models and modelling methods related to areas such as networks, intelligent systems, population dynamics, medical science and engineering, as well as a wide variety of analytical and numerical methods. The conference aimed to foster cooperation among students, researchers and experts from diverse areas of mathematics and related sciences and to promote fruitful exchanges on crucial research in the field.This book is a valuable resource for graduate students, researchers and educators interested in applied mathematics and interactions of mathematics with other branches of science to provide insights into analysing, modelling and solving various scientific problems in applied sciences.
Mathematical Methods and Models in Biomedicine
by Heinz Schättler Eugene Kashdan Avner Friedman Urszula LedzewiczMathematical biomedicine is a rapidly developing interdisciplinary field of research that connects the natural and exact sciences in an attempt to respond to the modeling and simulation challenges raised by biology and medicine. There exist a large number of mathematical methods and procedures that can be brought in to meet these challenges and this book presents a palette of such tools ranging from discrete cellular automata to cell population based models described by ordinary differential equations to nonlinear partial differential equations representing complex time- and space-dependent continuous processes. Both stochastic and deterministic methods are employed to analyze biological phenomena in various temporal and spatial settings. This book illustrates the breadth and depth of research opportunities that exist in the general field of mathematical biomedicine by highlighting some of the fascinating interactions that continue to develop between the mathematical and biomedical sciences. It consists of five parts that can be read independently, but are arranged to give the reader a broader picture of specific research topics and the mathematical tools that are being applied in its modeling and analysis. The main areas covered include immune system modeling, blood vessel dynamics, cancer modeling and treatment, and epidemiology. The chapters address topics that are at the forefront of current biomedical research such as cancer stem cells, immunodominance and viral epitopes, aggressive forms of brain cancer, or gene therapy. The presentations highlight how mathematical modeling can enhance biomedical understanding and will be of interest to both the mathematical and the biomedical communities including researchers already working in the field as well as those who might consider entering it. Much of the material is presented in a way that gives graduate students and young researchers a starting point for their own work.
Mathematical Methods for Accident Reconstruction: A Forensic Engineering Perspective
by Harold Franck Darren FranckOver the past 25 years, Harold and Darren Franck have investigated hundreds of accidents involving vehicles of almost every shape, size, and type imaginable. In Mathematical Methods for Accident Reconstruction: A Forensic Engineering Perspective, these seasoned experts demonstrate the application of mathematics to modeling accident reconstructions
Mathematical Methods for Elastic Plates
by Christian ConstandaMathematical models of deformation of elastic plates are used by applied mathematicians and engineers in connection with a wide range of practical applications, from microchip production to the construction of skyscrapers and aircraft. This book employs two important analytic techniques to solve the fundamental boundary value problems for the theory of plates with transverse shear deformation, which offers a more complete picture of the physical process of bending than Kirchhoff's classical one. The first method transfers the ellipticity of the governing system to the boundary, leading to singular integral equations on the contour of the domain. These equations, established on the basis of the properties of suitable layer potentials, are then solved in spaces of smooth (Hölder continuous and Hölder continuously differentiable) functions. The second technique rewrites the differential system in terms of complex variables and fully integrates it, expressing the solution as a combination of complex analytic potentials. The last chapter develops a generalized Fourier series method closely connected with the structure of the system, which can be used to compute approximate solutions. The numerical results generated as an illustration for the interior Dirichlet problem are accompanied by remarks regarding the efficiency and accuracy of the procedure. The presentation of the material is detailed and self-contained, making Mathematical Methods for Elastic Plates accessible to researchers and graduate students with a basic knowledge of advanced calculus.
Mathematical Methods for Optical Physics and Engineering
by Gregory J. Gbur"The first textbook on mathematical methods focusing on techniques for optical science and engineering, this text is ideal for upper division undergraduate and graduate students in optical physics. Containing detailed sections on the basic theory, the textbook places strong emphasis on connecting the abstract mathematical concepts to the optical systems to which they are applied. It covers many topics which usually only appear in more specialized books, such as Zernike polynomials, wavelet and fractional Fourier transforms, vector spherical harmonics, the z-transform, and the angular spectrum representation. Most chapters end by showing how the techniques covered can be used to solve an optical problem. Essay problems based on research publications and numerous exercises help to further strengthen the connection between the theory and its applications"--
Mathematical Methods for Physics and Engineering
by K. F. Riley M. P. Hobson S. J. BenceMathematical Methods for Physics and Engineering, Third Edition is a highly acclaimed undergraduate textbook that teaches all the mathematics for an undergraduate course in any of the physical sciences. As well as lucid descriptions of all the topics and many worked examples, it contains over 800 exercises. New stand-alone chapters give a systematic account of the 'special functions' of physical science, cover an extended range of practical applications of complex variables, and give an introduction to quantum operators. This solutions manual accompanies the third edition of Mathematical Methods for Physics and Engineering. It contains complete worked solutions to over 400 exercises in the main textbook, the odd-numbered exercises, that are provided with hints and answers. The even-numbered exercises have no hints, answers or worked solutions and are intended for unaided homework problems; full solutions are available to instructors on a password-protected web site, www. cambridge. org/9780521679718.
Mathematical Methods for the Assessment and Control of Industrial Emissions (Mathematical Engineering)
by Yuri N. Skiba David Parra GuevaraThis book delves onto modern mathematical methods aimed at mitigating environmental pollution risks caused by industrial activities. Showing the alarming global issue of industrial pollution, the text explores the complexities of emission control strategies and dispersion models. Through a systematic approach, readers will gain insights into the utilization of mathematical models to assess pollutant dispersion, regulate emissions, and pinpoint sources of excessive pollution. With a focus on averting health risks and ensuring compliance with sanitary standards, the book elucidates the application of control strategies to manage pollutant concentrations effectively. From differential equations to optimization theory, the narrative navigates through interdisciplinary concepts, offering a wealth of knowledge for researchers, professionals, and students alike. Chapters brim with illustrative examples, shedding light on air and marine pollution control, while emphasizing the versatility of the discussed strategies. Whether tackling two-dimensional or three-dimensional dispersion models, the book equips readers with essential tools to confront the pressing challenges of industrial pollution in both developed and developing regions.
Mathematical Methods in Chemical and Biological Engineering
by Binay Kanti DuttaMathematical Methods in Chemical and Biological Engineering describes basic to moderately advanced mathematical techniques useful for shaping the model-based analysis of chemical and biological engineering systems. Covering an ideal balance of basic mathematical principles and applications to physico-chemical problems, this book presents examples drawn from recent scientific and technical literature on chemical engineering, biological and biomedical engineering, food processing, and a variety of diffusional problems to demonstrate the real-world value of the mathematical methods. Emphasis is placed on the background and physical understanding of the problems to prepare students for future challenging and innovative applications.
Mathematical Methods in Dynamical Systems
by S. Chakraverty Subrat Kumar JenaThe art of applying mathematics to real-world dynamical problems such as structural dynamics, fluid dynamics, wave dynamics, robot dynamics, etc. can be extremely challenging. Various aspects of mathematical modelling that may include deterministic or uncertain (fuzzy, interval, or stochastic) scenarios, along with integer or fractional order, are vital to understanding these dynamical systems. Mathematical Methods in Dynamical Systems offers problem-solving techniques and includes different analytical, semi-analytical, numerical, and machine intelligence methods for finding exact and/or approximate solutions of governing equations arising in dynamical systems. It provides a singular source of computationally efficient methods to investigate these systems and includes coverage of various industrial applications in a simple yet comprehensive way.
Mathematical Methods in Elasticity Imaging
by Josselin Garnier Hyundae Lee Habib Ammari Hyeonbae Kang Abdul Wahab Elie BretinThis book is the first to comprehensively explore elasticity imaging and examines recent, important developments in asymptotic imaging, modeling, and analysis of deterministic and stochastic elastic wave propagation phenomena. It derives the best possible functional images for small inclusions and cracks within the context of stability and resolution, and introduces a topological derivative-based imaging framework for detecting elastic inclusions in the time-harmonic regime. For imaging extended elastic inclusions, accurate optimal control methodologies are designed and the effects of uncertainties of the geometric or physical parameters on stability and resolution properties are evaluated. In particular, the book shows how localized damage to a mechanical structure affects its dynamic characteristics, and how measured eigenparameters are linked to elastic inclusion or crack location, orientation, and size. Demonstrating a novel method for identifying, locating, and estimating inclusions and cracks in elastic structures, the book opens possibilities for a mathematical and numerical framework for elasticity imaging of nanoparticles and cellular structures.
Mathematical Methods in Engineering
by Nuno Miguel Fonseca Ferreira José António Tenreiro MachadoThis book presents a careful selection of the contributions presented at the Mathematical Methods in Engineering (MME10) International Symposium, held at the Polytechnic Institute of Coimbra- Engineering Institute of Coimbra (IPC/ISEC), Portugal, October 21-24, 2010. The volume discusses recent developments about theoretical and applied mathematics toward the solution of engineering problems, thus covering a wide range of topics, such as: Automatic Control, Autonomous Systems, Computer Science, Dynamical Systems and Control, Electronics, Finance and Economics, Fluid Mechanics and Heat Transfer, Fractional Mathematics, Fractional Transforms and Their Applications, Fuzzy Sets and Systems, Image and Signal Analysis, Image Processing, Mechanics, Mechatronics, Motor Control and Human Movement Analysis, Nonlinear Dynamics, Partial Differential Equations, Robotics, Acoustics, Vibration and Control, and Wavelets.
Mathematical Methods in Engineering
by Joseph M. Powers Mihir SenThis text focuses on a variety of topics in mathematics in common usage in graduate engineering programs including vector calculus, linear and nonlinear ordinary differential equations, approximation methods, vector spaces, linear algebra, integral equations and dynamical systems. The book is designed for engineering graduate students who wonder how much of their basic mathematics will be of use in practice. Following development of the underlying analysis, the book takes students step-by-step through a large number of examples that have been worked in detail. Students can choose to go through each step or to skip ahead if they so desire. After seeing all the intermediate steps, they will be in a better position to know what is expected of them when solving homework assignments, examination problems, and when they are on the job. Each chapter concludes with numerous exercises for the student that reinforce the chapter content and help connect the subject matter to a variety of engineering problems. Students today have grown up with computer-based tools including numerical calculations and computer graphics; the worked-out examples as well as the end-of-chapter exercises often use computers for numerical and symbolic computations and for graphical display of the results.
Mathematical Methods in Engineering: Theoretical Aspects (Nonlinear Systems and Complexity #23)
by Kenan Taş Dumitru Baleanu J. A. MachadoThis book collects chapters dealing with some of the theoretical aspects needed to properly discuss the dynamics of complex engineering systems. The book illustrates advanced theoretical development and new techniques designed to better solve problems within the nonlinear dynamical systems. Topics covered in this volume include advances on fixed point results on partial metric spaces, localization of the spectral expansions associated with the partial differential operators, irregularity in graphs and inverse problems, Hyers-Ulam and Hyers-Ulam-Rassias stability for integro-differential equations, fixed point results for mixed multivalued mappings of Feng-Liu type on Mb-metric spaces, and the limit q-Bernstein operators, analytical investigation on the fractional diffusion absorption equation.
Mathematical Methods in Engineering: Applications in Dynamics of Complex Systems (Nonlinear Systems and Complexity #24)
by Kenan Taş Dumitru Baleanu J. A. MachadoThis book presents recent developments in nonlinear dynamics with an emphasis on complex systems. The volume illustrates new methods to characterize the solutions of nonlinear dynamics associated with complex systems. This book contains the following topics: new solutions of the functional equations, optimization algorithm for traveling salesman problem, fractals, control, fractional calculus models, fractional discretization, local fractional partial differential equations and their applications, and solutions of fractional kinetic equations.
Mathematical Methods in Engineering and Applied Sciences (Mathematics and its Applications)
by Hemen DuttaThis book covers tools and techniques used for developing mathematical methods and modelling related to real-life situations. It brings forward significant aspects of mathematical research by using different mathematical methods such as analytical, computational, and numerical with relevance or applications in engineering and applied sciences. Presents theory, methods, and applications in a balanced manner Includes the basic developments with full details Contains the most recent advances and offers enough references for further study Written in a self-contained style and provides proof of necessary results Offers research problems to help early career researchers prepare research proposals Mathematical Methods in Engineering and Applied Sciences makes available for the audience, several relevant topics in one place necessary for crucial understanding of research problems of an applied nature. This should attract the attention of general readers, mathematicians, and engineers interested in new tools and techniques required for developing more accurate mathematical methods and modelling corresponding to real-life situations.
Mathematical Methods in Liquid Crystal Optics and Lens Design (Springer Tracts in Modern Physics #294)
by Eric StachuraFreeform lens design has numerous applications in imaging, aerospace, and biomedicine. Due to recent advancements in precision cutting and grinding, the manufacturing of freeform optical lenses with very high precision is now possible. However, there is still a significant lack of mathematical literature on the subject, and essentially none related to liquid crystals. Liquid crystals are appealing for use in imaging due to their flexibility and unique electro-optical properties. This book fills a gap in mathematical literature and attracts focus to liquid crystals for freeform lens design. It provides a rigorous mathematical perspective on liquid crystal optics, focusing on ray tracing in the geometric optics regime. A mathematical foundation is set to study lens design and ray tracing problems in liquid crystals. Additionally, it addresses absolute instruments, which are devices that image without any optical aberrations. These instruments cannot be designed through transformation optics, and until recently, only a handful of examples were known. Mathematically, this is a largely untapped area of research, yet the applications are profound. Finally, the book describes several open directions, revealing the richness of the intersection of liquid crystal optics and mathematical analysis. The content of this book will prove invaluable for researchers of mathematical optics as well as those interested in liquid crystal theory, in addition to those mathematics graduate students aiming to understand the physical basis of light propagation in liquid crystals
Mathematical Methods in Modern Complexity Science (Nonlinear Systems and Complexity #33)
by Dimitri Volchenkov J. A. Tenreiro MachadoThis book presents recent developments in nonlinear and complex systems. It provides recent theoretic developments and new techniques based on a nonlinear dynamical systems approach that can be used to model and understand complex behavior in nonlinear dynamical systems. It covers information theory, relativistic chaotic dynamics, data analysis, relativistic chaotic dynamics, solvability issues in integro-differential equations, and inverse problems for parabolic differential equations, synchronization and chaotic transient. Presents new concepts for understanding and modeling complex systems
Mathematical Methods in Physics and Engineering (Dover Books on Physics)
by John W. DettmanIntended for college-level physics, engineering, or mathematics students, this volume offers an algebraically based approach to various topics in applied math. It is accessible to undergraduates with a good course in calculus which includes infinite series and uniform convergence. Exercises follow each chapter to test the student's grasp of the material; however, the author has also included exercises that extend the results to new situations and lay the groundwork for new concepts to be introduced later. A list of references for further reading will be found at the end of each chapter. For this second revised edition, Professor Dettman included a new section on generalized functions to help explain the use of the Dirac delta function in connection with Green's functions. In addition, a new approach to series solutions of ordinary differential equations has made the treatment independent of complex variable theory. This means that the first six chapters can be grasped without prior knowledge of complex variables. However, since Chapter 8 depends heavily on analytic functions of a complex variable, a new Chapter 7 on analytic function theory has been written.
Mathematical Methods in Physics and Engineering with Mathematica (Chapman & Hall/CRC Applied Mathematics & Nonlinear Science)
by Ferdinand F. CapMore than ever before, complicated mathematical procedures are integral to the success and advancement of technology, engineering, and even industrial production. Knowledge of and experience with these procedures is therefore vital to present and future scientists, engineers and technologists.Mathematical Methods in Physics and Engineering
Mathematical Methods in Robust Control of Linear Stochastic Systems
by Vasile Dragan Toader Morozan Adrian-Mihail StoicaThis second edition of Mathematical Methods in the Robust Control of Linear Stochastic Systems includes a large number of recent results in the control of linear stochastic systems. More specifically, the new results presented are: - A unified and abstract framework for Riccati type equations arising in the stochastic control - Stability and control problems for systems perturbed by homogeneous Markov processes with infinite number of states - Mixed H2 / H∞ control problem and numerical procedures - Linear differential equations with positive evolution on ordered Banach spaces with applications for stochastic systems including both multiplicative white noise and Markovian jumps represented by a Markov chain with countable infinite set of states - Kalman filtering for stochastic systems subject both to state dependent noise and Markovian jumps - H∞ reduced order filters for stochastic systems The book will appeal to graduate students, researchers in advanced control engineering, finance, mathematical systems theory, applied probability and stochastic processes, and numerical analysis. From Reviews of the First Edition: This book is concerned with robust control of stochastic systems. One of the main features is its coverage of jump Markovian systems. . . . Overall, this book presents results taking into consideration both white noise and Markov chain perturbations. It is clearly written and should be useful for people working in applied mathematics and in control and systems theory. The references cited provide further reading sources. (George Yin, Mathematical Reviews, Issue 2007 m) This book considers linear time varying stochastic systems, subjected to white noise disturbances and system parameter Markovian jumping, in the context of optimal control . . . robust stabilization, and disturbance attenuation. . . . The material presented in the book is organized in seven chapters. . . . The book is very well written and organized. . . . is a valuable reference for all researchers and graduate students in applied mathematics and control engineering interested in linear stochastic time varying control systems with Markovian parameter jumping and white noise disturbances. (Zoran Gajic, SIAM Review, Vol. 49 (3), 2007)
Mathematical Model of Spontaneous Potential Well-Logging and Its Numerical Solutions
by Tatsien Li Yongji Tan Zhijie Cai Wei Chen Jingnong WangSpontaneous potential (SP) well-logging is one of the most common and useful well-logging techniques in petroleum exploitation. This monograph is the first of its kind on the mathematical model of spontaneous potential well-logging and its numerical solutions. The mathematical model established in this book shows the necessity of introducing Sobolev spaces with fractional power, which seriously increases the difficulty of proving the well-posedness and proposing numerical solution schemes. In this book, in the axisymmetric situation the well-posedness of the corresponding mathematical model is proved and three efficient schemes of numerical solution are proposed, supported by a number of numerical examples to meet practical computation needs.
Mathematical Modeling: A Dynamical Systems Approach to Analyze Practical Problems in STEM Disciplines (Mathematical Engineering)
by Antonio PalaciosThis book provides qualitative and quantitative methods to analyze and better understand phenomena that change in space and time. An innovative approach is to incorporate ideas and methods from dynamical systems and equivariant bifurcation theory to model, analyze and predict the behavior of mathematical models. In addition, real-life data is incorporated in the derivation of certain models. For instance, the model for a fluxgate magnetometer includes experiments in support of the model. The book is intended for interdisciplinary scientists in STEM fields, who might be interested in learning the skills to derive a mathematical representation for explaining the evolution of a real system. Overall, the book could be adapted in undergraduate- and postgraduate-level courses, with students from various STEM fields, including: mathematics, physics, engineering and biology.
Mathematical Modeling and Computational Intelligence in Engineering Applications
by Antônio José da Silva Neto Orestes Llanes Santiago Geraldo Nunes SilvaThis book brings together a rich selection of studies in mathematical modeling and computational intelligence, with application in several fields of engineering, like automation, biomedical, chemical, civil, electrical, electronic, geophysical and mechanical engineering, on a multidisciplinary approach. Authors from five countries and 16 different research centers contribute with their expertise in both the fundamentals and real problems applications based upon their strong background on modeling and computational intelligence. The reader will find a wide variety of applications, mathematical and computational tools and original results, all presented with rigorous mathematical procedures. This work is intended for use in graduate courses of engineering, applied mathematics and applied computation where tools as mathematical and computational modeling, numerical methods and computational intelligence are applied to the solution of real problems.