- Table View
- List View
Mathematical Models for Suspension Bridges
by Filippo GazzolaThis work provides a detailed and up-to-the-minute survey of the various stability problems that can affect suspension bridges. In order to deduce some experimental data and rules on the behavior of suspension bridges, a number of historical events are first described, in the course of which several questions concerning their stability naturally arise. The book then surveys conventional mathematical models for suspension bridges and suggests new nonlinear alternatives, which can potentially supply answers to some stability questions. New explanations are also provided, based on the nonlinear structural behavior of bridges. All the models and responses presented in the book employ the theory of differential equations and dynamical systems in the broader sense, demonstrating that methods from nonlinear analysis can allow us to determine the thresholds of instability.
Mathematical Models for Systems Reliability
by Benjamin Epstein Ishay WeissmanEvolved from the lectures of a recognized pioneer in developing the theory of reliability, Mathematical Models for Systems Reliability provides a rigorous treatment of the required probability background for understanding reliability theory.This classroom-tested text begins by discussing the Poisson process and its associated probability
Mathematical Models in the Biosciences I
by Michael FrameAn award-winning professor’s introduction to essential concepts of calculus and mathematical modeling for students in the biosciences This is the first of a two-part series exploring essential concepts of calculus in the context of biological systems. Michael Frame covers essential ideas and theories of basic calculus and probability while providing examples of how they apply to subjects like chemotherapy and tumor growth, chemical diffusion, allometric scaling, predator-prey relations, and nerve impulses. Based on the author’s calculus class at Yale University, the book makes concepts of calculus more relatable for science majors and premedical students.
Mathematical Models of Beams and Cables
by Angelo Luongo Daniele ZulliNonlinear models of elastic and visco-elastic onedimensional continuous structures (beams and cables) are formulated by the authors of this title. Several models of increasing complexity are presented: straight/curved, planar/non-planar, extensible/inextensible, shearable/unshearable, warpingunsensitive/ sensitive, prestressed/unprestressed beams, both in statics and dynamics. Typical engineering problems are solved via perturbation and/or numerical approaches, such as bifurcation and stability under potential and/or tangential loads, parametric excitation, nonlinear dynamics and aeroelasticity. Contents 1. A One-Dimensional Beam Metamodel.2. Straight Beams.3. Curved Beams.4. Internally Constrained Beams.5. Flexible Cables.6. Stiff Cables.7. Locally-Deformable Thin-Walled Beams.8. Distortion-Constrained Thin-Walled Beams.
Mathematical Models of Cancer and Different Therapies: Unified Framework (Series in BioEngineering)
by Regina Padmanabhan Nader Meskin Ala-Eddin Al MoustafaThis book provides a unified framework for various currently available mathematical models that are used to analyze progression and regression in cancer development, and to predict its dynamics with respect to therapeutic interventions. Accurate and reliable model representations of cancer dynamics are milestones in the field of cancer research. Mathematical modeling approaches are becoming increasingly common in cancer research, as these quantitative approaches can help to validate hypotheses concerning cancer dynamics and thus elucidate the complexly interlaced mechanisms involved. Even though the related conceptual and technical information is growing at an exponential rate, the application of said information and realization of useful healthcare devices are lagging behind.In order to remedy this discrepancy, more interdisciplinary research works and course curricula need to be introduced in academic, industrial, and clinical organizations alike. To that end, this book reformulates most of the existing mathematical models as special cases of a general model, allowing readers to easily get an overall idea of cancer dynamics and its modeling. Moreover, the book will help bridge the gap between biologists and engineers, as it brings together cancer dynamics, the main steps involved in mathematical modeling, and control strategies developed for cancer management. This also allows readers in both medical and engineering fields to compare and contrast all the therapy-based models developed to date using a single source, and to identify unexplored research directions.
Mathematical Models of Crop Growth and Yield (Books In Soils, Plants, And The Environment Ser. #Vol. 91)
by Allen R. Overman Richard V. Scholtz IIIHighlighting effective, analytical functions that have been found useful for the comparison of alternative management techniques to maximize water and nutrient resources, this reference describes the application of viable mathematical models in data analysis to increase crop growth and yields. Featuring solutions to various differential equations,
Mathematical Models of Electrical Network Systems
by Andrzej KłosThis book is for all those who are looking for a non-conventional mathematical model of electrical network systems. It presents a modern approach using linear algebra and derives various commonly unknown quantities and interrelations of network analysis. It also explores some applications of algebraic network model of and solves some examples of previously unsolved network problems in planning and operation of network systems. Complex mathematical aspects are illustrated and described in a way that is understandable for non-mathematicians. Discussing interesting concepts and practically useful methods of network analysis, it is a valuable resource for lecturers, students, engineers
Mathematical Models of Exoskeleton: Dynamics, Strength, Control (Studies in Systems, Decision and Control #431)
by Andrey Valerievich Borisov Anatoly Vlasovich ChigarevThis book presents the current state of the problem of describing the musculoskeletal system of a person. Models of the destruction of the endoskeleton and the restoration of its functions using exoskeleton are presented. A description is given of new approaches to modeling based on the use of weightless rods of variable length with concentrated masses. The practical application to the tasks of numerical simulation of the movements of the musculoskeletal system of a person is described. Exoskeleton models with variable-length units based on absolutely hard sections and sections that change their telescopic type length have been developed.The book is intended for specialists in the field of theoretical mechanics, biomechanics, robotics and related fields. The book will be useful to teachers, as well as graduate students, undergraduates and senior students of higher educational institutions, whose research interests lie in the modeling of anthropomorphic biomechanical systems.
Mathematical Models of Information and Stochastic Systems
by Philipp KornreichFrom ancient soothsayers and astrologists to today’s pollsters and economists, probability theory has long been used to predict the future on the basis of past and present knowledge. Mathematical Models of Information and Stochastic Systems shows that the amount of knowledge about a system plays an important role in the mathematical models used to foretell the future of the system. It explains how this known quantity of information is used to derive a system’s probabilistic properties. After an introduction, the book presents several basic principles that are employed in the remainder of the text to develop useful examples of probability theory. It examines both discrete and continuous distribution functions and random variables, followed by a chapter on the average values, correlations, and covariances of functions of variables as well as the probabilistic mathematical model of quantum mechanics. The author then explores the concepts of randomness and entropy and derives various discrete probabilities and continuous probability density functions from what is known about a particular stochastic system. The final chapters discuss information of discrete and continuous systems, time-dependent stochastic processes, data analysis, and chaotic systems and fractals. By building a range of probability distributions based on prior knowledge of the problem, this classroom-tested text illustrates how to predict the behavior of diverse systems. A solutions manual is available for qualifying instructors.
Mathematical Morphology: From Theory to Applications (Wiley-iste Ser. #Vol. 30)
by Laurent Najman Hugues TalbotMathematical Morphology allows for the analysis and processing of geometrical structures using techniques based on the fields of set theory, lattice theory, topology, and random functions. It is the basis of morphological image processing, and finds applications in fields including digital image processing (DSP), as well as areas for graphs, surface meshes, solids, and other spatial structures. This book presents an up-to-date treatment of mathematical morphology, based on the three pillars that made it an important field of theoretical work and practical application: a solid theoretical foundation, a large body of applications and an efficient implementation. The book is divided into five parts and includes 20 chapters. The five parts are structured as follows: Part I sets out the fundamental aspects of the discipline, starting with a general introduction, followed by two more theory-focused chapters, one addressing its mathematical structure and including an updated formalism, which is the result of several decades of work. Part II extends this formalism to some non-deterministic aspects of the theory, in particular detailing links with other disciplines such as stereology, geostatistics and fuzzy logic. Part III addresses the theory of morphological filtering and segmentation, featuring modern connected approaches, from both theoretical and practical aspects. Part IV features practical aspects of mathematical morphology, in particular how to deal with color and multivariate data, links to discrete geometry and topology, and some algorithmic aspects; without which applications would be impossible. Part V showcases all the previously noted fields of work through a sample of interesting, representative and varied applications.
Mathematical Morphology in Geomorphology and GISci
by Behara Seshadri Daya SagarMathematical Morphology in Geomorphology and GISci presents a multitude of mathematical morphological approaches for processing and analyzing digital images in quantitative geomorphology and geographic information science (GISci). Covering many interdisciplinary applications, the book explains how to use mathematical morphology not only to perform
Mathematical Morphology in Image Processing (Optical Science and Engineering #1)
by Edward DoughertyPresents the statistical analysis of morphological filters and their automatic optical design, the development of morphological features for image signatures, and the design of efficient morphological algorithms. Extends the morphological paradigm to include other branches of science and mathematics.;This book is designed to be of interest to optical, electrical and electronics, and electro-optic engineers, including image processing, signal processing, machine vision, and computer vision engineers, applied mathematicians, image analysts and scientists and graduate-level students in image processing and mathematical morphology courses.
Mathematical Music: From Antiquity to Music AI
by Nikita BraguinskiMathematical Music offers a concise and easily accessible history of how mathematics was used to create music. The story presented in this short, engaging volume ranges from ratios in antiquity to random combinations in the 17th century, 20th-century statistics, and contemporary artificial intelligence. This book provides a fascinating panorama of the gradual mechanization of thought processes involved in the creation of music. How did Baroque authors envision a composition system based on combinatorics? What was it like to create musical algorithms at the beginning of the 20th century, before the computer became a reality? And how does this all explain today’s use of artificial intelligence and machine learning in music? In addition to discussing the history and the present state of mathematical music, Braguinski also takes a look at what possibilities the near future of music AI might hold for listeners, musicians, and the society. Grounded in research findings from musicology and the history of technology, and written for the non-specialist general audience, this book helps both student and professional readers to make sense of today’s music AI by situating it in a continuous historical context.
Mathematical Optics: Classical, Quantum, and Computational Methods
by Vasudevan Lakshminarayanan Maria L. Calvo Tatiana AlievaGoing beyond standard introductory texts, Mathematical Optics: Classical, Quantum, and Computational Methods brings together many new mathematical techniques from optical science and engineering research. Profusely illustrated, the book makes the material accessible to students and newcomers to the field. Divided into six parts, the text presents state-of-the-art mathematical methods and applications in classical optics, quantum optics, and image processing. Part I describes the use of phase space concepts to characterize optical beams and the application of dynamic programming in optical waveguides. Part II explores solutions to paraxial, linear, and nonlinear wave equations. Part III discusses cutting-edge areas in transformation optics (such as invisibility cloaks) and computational plasmonics. Part IV uses Lorentz groups, dihedral group symmetry, Lie algebras, and Liouville space to analyze problems in polarization, ray optics, visual optics, and quantum optics. Part V examines the role of coherence functions in modern laser physics and explains how to apply quantum memory channel models in quantum computers. Part VI introduces super-resolution imaging and differential geometric methods in image processing. As numerical/symbolic computation is an important tool for solving numerous real-life problems in optical science, many chapters include Mathematica® code in their appendices. The software codes and notebooks as well as color versions of the book’s figures are available at www.crcpress.com.
Mathematical Optimization for Efficient and Robust Energy Networks (AIRO Springer Series #4)
by Natalia Selini Hadjidimitriou Antonio Frangioni Thorsten Koch Andrea LodiThis book presents a collection of energy production and distribution problems identified by the members of the COST Action TD1207 "Mathematical Optimization in the Decision Support Systems for Efficient and Robust Energy Networks". The aim of the COST Action was to coordinate the efforts of the experts in different fields, from academia and industry, in developing innovative tools for quantitative decision making, and apply them to the efficient and robust design and management of energy networks. The work covers three main goals:• to be a nimble while comprehensive resource of several real life business problems with a categorized set of pointers to many relevant prescriptive problems for energy systems;• to offer a balanced mix of scientific and industrial views;• to evolve over time in a flexible and dynamic way giving, from time to time, a more scientific or industrial - or even political in a broad sense - weighed perspective.It is addressed to researchers and professionals working in the field.
Mathematical Optimization Theory and Operations Research: 23rd International Conference, MOTOR 2024, Omsk, Russia, June 30–July 6, 2024, Proceedings (Lecture Notes in Computer Science #14766)
by Panos Pardalos Yury Kochetov Michael Khachay Anton Eremeev Vladimir MazalovThis book constitutes the refereed proceedings of the 23rd International Conference on Mathematical Optimization Theory and Operations Research, MOTOR 2024, held in Omsk, Russia, during June 30 - July 6, 2024. The 30 full papers included in this book were carefully reviewed and selected from 79 submissions. This book also contains two invited talk. They were organized in topical sections as follows: mathematical programming; combinatorial optimization; game theory; and operations research.
A Mathematical Perspective on Flight Dynamics and Control
by Andrea L'AfflittoThis brief presents several aspects of flight dynamics, which are usually omitted or briefly mentioned in textbooks, in a concise, self-contained, and rigorous manner. The kinematic and dynamic equations of an aircraft are derived starting from the notion of the derivative of a vector and then thoroughly analysed, interpreting their deep meaning from a mathematical standpoint and without relying on physical intuition. Moreover, some classic and advanced control design techniques are presented and illustrated with meaningful examples. Distinguishing features that characterize this brief include a definition of angular velocity, which leaves no room for ambiguities, an improvement on traditional definitions based on infinitesimal variations. Quaternion algebra, Euler parameters, and their role in capturing the dynamics of an aircraft are discussed in great detail. After having analyzed the longitudinal- and lateral-directional modes of an aircraft, the linear-quadratic regulator, the linear-quadratic Gaussian regulator, a state-feedback H-infinity optimal control scheme, and model reference adaptive control law are applied to aircraft control problems. To complete the brief, an appendix provides a compendium of the mathematical tools needed to comprehend the material presented in this brief and presents several advanced topics, such as the notion of semistability, the Smith–McMillan form of a transfer function, and the differentiation of complex functions: advanced control-theoretic ideas helpful in the analysis presented in the body of the brief. A Mathematical Perspective on Flight Dynamics and Control will give researchers and graduate students in aerospace control an alternative, mathematically rigorous means of approaching their subject.
Mathematical Physics: Applications and Problems
by V. BalakrishnanThis textbook is aimed at advanced undergraduate and graduate students interested in learning the fundamental mathematical concepts and tools widely used in different areas of physics. The author draws on a vast teaching experience, and presents a comprehensive and self-contained text which explains how mathematics intertwines with and forms an integral part of physics in numerous instances. Rather than emphasizing rigorous proofs of theorems, specific examples and physical applications (such as fluid dynamics, electromagnetism, quantum mechanics, etc.) are invoked to illustrate and elaborate upon the relevant mathematical techniques. The early chapters of the book introduce different types of functions, vectors and tensors, vector calculus, and matrices. In the subsequent chapters, more advanced topics like linear spaces, operator algebras, special functions, probability distributions, stochastic processes, analytic functions, Fourier series and integrals, Laplace transforms, Green's functions and integral equations are discussed. The book also features about 400 exercises and solved problems interspersed throughout the text at appropriate junctures, to facilitate the logical flow and to test the key concepts. Overall this book will be a valuable resource for a wide spectrum of students and instructors of mathematical physics.
Mathematical Principle and Fractal Analysis of Mesoscale Eddy
by Shu-Tang Liu Yu-Pin Wang Zhi-Min Bi Yin WangThis book focuses on universal nonlinear dynamics model of mesoscale eddies. The results of this book are not only the direct-type applications of pure mathematical limit cycle theory and fractal theory in practice but also the classic combination of nonlinear dynamic systems in mathematics and the physical oceanography. The universal model and experimental verification not only verify the relevant results that are obtained by Euler's form but also, more importantly, are consistent with observational numerical statistics. Due to the universality of the model, the consequences of the system are richer and more complete. The comprehensive and systematic mathematical modeling of mesoscale eddies is one of the major features of the book, which is particularly suited for readers who are interested to learn fractal analysis and prediction in physical oceanography. The book benefits researchers, engineers, and graduate students in the fields of mesoscale eddies, fractal, chaos, and other applications, etc.
Mathematical Principles of Remote Sensing: Making Inferences from Noisy Data
by Andrew S MilmanThis book is an informative reference, or working textbook, on the mathematics, and general physical and chemical processes behind remote sensor measurements.
Mathematical Programming for Operations Researchers and Computer Scientists
by Albert G. HolzmanThis book covers the fundamentals of linear programming, extension of linear programming to discrete optimization methods, multi-objective functions, quadratic programming, geometric programming, and classical calculus methods for solving nonlinear programming problems.
Mathematical Progress in Expressive Image Synthesis II
by Hiroyuki Ochiai Ken AnjyoThe material included in this book provides selected presentations given at the international symposium MEIS2014. The book aims to provide a unique venue where various issues in computer graphics (CG) application fields are discussed by mathematicians as well as CG researchers and practitioners. The target audience is not limited to researchers in academia but also those in industries with a strong interest in digital media creation, scientific visualization and visual engineering.
Mathematical Structures of Ergodicity and Chaos in Population Dynamics (Studies in Systems, Decision and Control #312)
by Paweł J. MitkowskiThis book concerns issues related to biomathematics, medicine, or cybernetics as practiced by engineers. Considered population dynamics models are still in the interest of researchers, and even this interest is increasing, especially now in the time of SARS-CoV-2 coronavirus pandemic, when models are intensively studied in order to help predict its behaviour within human population. The structures of population dynamics models and practical methods of finding their solutions are discussed. Finally, the hypothesis of the existence of non-trivial ergodic properties of the model of erythropoietic response dynamics formulated by A. Lasota in the form of delay differential equation with unimodal feedback is analysed. The research can be compared with actual medical data, as well as shows that the structures of population models can reflect the dynamic structures of reality.
Mathematical Summary for Digital Signal Processing Applications with Matlab
by E. S. GopiMathematical summary for Digital Signal Processing Applications with Matlab consists of Mathematics which is not usually dealt in the DSP core subject, but used in DSP applications. Matlab programs with illustrations are given for the selective topics such as generation of Multivariate Gaussian distributed sample outcomes, Bacterial foraging algorithm, Newton's iteration, Steepest descent algorithm, etc. are given exclusively in the separate chapter. Also Mathematical summary for Digital Signal Processing Applications with Matlab is written in such a way that it is suitable for Non-Mathematical readers and is very much suitable for the beginners who are doing research in Digital Signal Processing.
Mathematical Techniques: An Introduction For The Engineering, Physical, And Mathematical Sciences
by Dominic Jordan Peter SmithMathematical concepts and theories underpin engineering and many of the physical sciences. Yet many engineering and science students find math challenging and even intimidating. The fourth edition of Mathematical Techniques provides a complete course in mathematics, covering all the essential topics with which a physical sciences or engineering student should be familiar. By breaking the subject into small, modular chapters, the book introduces and builds on concepts in a progressive, carefully-layered way - always with an emphasis on using math to the best effect, rather than relying on theoretical proofs. With a huge array of end of chapter problems and new self-check questions, the fourth edition of Mathematical Techniques provides extensive opportunities for students to exercise and enhance their mathematical knowledge and skills.