Browse Results

Showing 41,851 through 41,875 of 62,068 results

Optical Methods of Measurement: Wholefield Techniques, Second Edition (Optical Science and Engineering)

by Rajpal Sirohi

Optical Methods of Measurement: Wholefield Techniques, Second Edition provides a comprehensive collection of wholefield optical measurement techniques for engineering applications. Along with the reorganization of contents, this edition includes a new chapter on optical interference, new material on nondiffracting and singular beams and their applications, and updated bibliography and additional reading sections. The book explores the propagation of laser beams, metrological applications of phase-singular beams, various detectors such as CCD and CMOS devices, and recording materials. It also covers interference, diffraction, and digital fringe pattern measurement techniques, with special emphasis on phase measurement interferometry and algorithms. The remainder of the book focuses on theory, experimental arrangements, and applications of wholefield techniques. The author discusses digital hologram interferometry, digital speckle photography, digital speckle pattern interferometry, Talbot interferometry, and holophotoelasticity. This updated book compiles the major wholefield methods of measurement in one volume. It provides a solid understanding of the techniques by describing the physics behind them. In addition, the examples given illustrate how the techniques solve measurement problems.

Optical Metrology and Optoacoustics in Nondestructive Evaluation of Materials (Springer Series in Optical Sciences #242)

by Zinoviy Nazarchuk Leonid Muravsky Dozyslav Kuryliak

This book includes the description, modeling and realization of new optical metrology techniques for technical diagnostics of materials. Special attention is paid to multi-step phase shifting interferometry with arbitrary phase shifts between interferograms, phase shifting and correlation digital speckle pattern interferometry, optical-digital speckle correlation, and digital image correlation, as well as dynamic speckle patterns analysis. Optoacoustic techniques can be treated as a separate branch of optical metrology and can solve many problems of technical diagnostics, including detection and localization of subsurface defects in laminated composite materials. The utility of such techniques can be increased by illumination of the object via acoustic waves at certain frequencies. Hence, an effective theoretical approach to the modeling of an elastic wave field interaction with an interphase defect, and to defect visualization using dynamic speckle patterns, is also included in this book. The experimental proof of the proposed approaches was achieved using a specially created hybrid optical-digital system for detection of different subsurface defects. This book is intended for engineers, researchers and students engaged in the field of nondestructive evaluation of materials and technical diagnostics of structural elements, hybrid optical systems, speckle metrology and optoacoustic imaging techniques.

Optical Microring Resonators: Theory, Techniques, and Applications (Series in Optics and Optoelectronics)

by Vien Van

"a detailed, cognizant account of numerous crucial aspects of optical microring resonators" – Amr S. Helmy, Professor of Electrical & Computer Engineering, University of Toronto "an excellent choice for gaining an insight into the vast potential of microring resonators" – Jalil Ali, Professor, Laser Center ISI-SIR, University of Technology, Malaysia "a thorough treatment… appeal[s] to a wide range of audiences" – L. Jay Guo, Professor of Electrical Engineering & Computer Science, The University of Michigan The field of microring resonator research has seen tremendous growth over the past decade, with microring resonators now becoming a ubiquitous element in integrated photonics technology. This book fills the need for a cohesive and comprehensive treatment of the subject, given its importance and the proliferation of new research in the field. The expert author has as an introductory guide for beginners as well as a reference source for more experienced researchers. This book aims to fulfill this need by providing a concise and detailed treatment of the fundamental concepts and theories that underpin the various applications. To appeal to as wide a readership as possible, major areas of applications of microring resonators will also be covered in depth.

The Optical Munitions Industry in Great Britain, 1888–1923 (Studies in Business History #5)

by Stephen C Sambrook

Running counter to the general decline of technological industries in post-Victorian Britain, optical munitions provides an important, previously overlooked, study into the business of manufacturing.

Optical Nano and Micro Actuator Technology

by George K. Knopf

In Optical Nano and Micro Actuator Technology, leading engineers, material scientists, chemists, physicists, laser scientists, and manufacturing specialists offer an in-depth, wide-ranging look at the fundamental and unique characteristics of light-driven optical actuators. They discuss how light can initiate physical movement and control a variety of mechanisms that perform mechanical work at the micro- and nanoscale. The book begins with the scientific background necessary for understanding light-driven systems, discussing the nature of light and the interaction between light and NEMS/MEMS devices. It then covers innovative optical actuator technologies that have been developed for many applications. The book examines photoresponsive materials that enable the design of optically driven structures and mechanisms and describes specific light-driven technologies that permit the manipulation of micro- and nanoscale objects. It also explores applications in optofluidics, bioMEMS and biophotonics, medical device design, and micromachine control. Inspiring the next generation of scientists and engineers to advance light-driven technologies, this book gives readers a solid grounding in this emerging interdisciplinary area. It thoroughly explains the scientific language and fundamental principles, provides a holistic view of optical nano and micro actuator systems, and illustrates current and potential applications of light-driven systems.

Optical Nano- and Microsystems for Bioanalytics

by Jürgen Popp Wolfgang Fritzsche

This book describes the state of the art in the field of bioanalytical nano- and microsystems with optical functionality. In 12 chapters distinguished scientists and leaders in their respective fields show how various optical technologies have been miniaturized and integrated over the last few decades in order to be combined with nano- and microsystems for applications in the life sciences. The main detection and characterization technologies are introduced, and examples of the superiority of these integrated approaches compared to traditional ones are provided. Examples from e.g. the fields of optical waveguides, integrated interferometers, surface plasmon resonance or Raman spectroscopy are introduced and discussed, and it is shown how these approaches have led to novel functionalities and thereby novel applications.

Optical Network Design and Planning

by Jane M. Simmons

This book takes a pragmatic approach to deploying state-of-the-art optical networking equipment in metro-core and backbone networks The book is oriented towards practical implementation of optical network design. Algorithms and methodologies related to routing, regeneration, wavelength assignment, sub rate-traffic grooming and protection are presented, with an emphasis on optical-bypass-enabled (or all-optical) networks. The author has emphasized the economics of optical networking, with a full chapter of economic studies that offer guidelines as to when and how optical-bypass technology should be deployed This new edition contains: new chapter on dynamic optical networking and a new chapter on flexible/elastic optical networks. Expanded coverage of new physical-layer technology (e. g. , coherent detection) and its impact on network design and enhanced coverage of ROADM architectures and properties, including colorless, directionless, contentionless and gridless. Covers 'hot' topics, such as Software Defined Networking and energy efficiency, algorithmic advancements and techniques, especially in the area of impairment-aware routing and wavelength assignment. Provides more illustrative examples of concepts are provided, using three reference networks (the topology files for the networks are provided on a web site, for further studies by the reader). Also exercises have been added at the end of the chapters to enhance the book's utility as a course textbook.

Optical Nonlinearities in Nanostructured Systems (Springer Tracts in Modern Physics #287)

by Carlos Torres-Torres Geselle García-Beltrán

This book provides readers with a detailed overview of second- and third-order nonlinearities in various nanostructures, as well as their potential applications. Interest in the field of nonlinear optics has grown exponentially in recent years and, as a result, there is increasing research on novel nonlinear phenomena and the development of nonlinear photonic devices. Thus, such a book serves as a comprehensive guide for researchers in the field and those seeking to become familiar with it.This text focuses on the nonlinear properties of nanostructured systems that arise as a result of optical wave mixing. The authors present a review of nonlinear optical processes on the nanoscale and provide theoretical descriptions for second and third-order optical nonlinearities in nanostructures such as carbon allotropes, metallic nanostructures, semiconductors, nanocrystals, and complex geometries. Here, the characterization and potential applications of these nanomaterials are also discussed. The factors that determine the nonlinear susceptibility in these systems are identified as well as the influence of physical mechanisms emerging from resonance and off-resonance excitations. In addition, the authors detail the effects driven by important phenomena such as quantum confinement, localized surface plasmon resonance, Fano resonances, bound states, and the Purcell effect on specific nanostructured systems. Readers are provided with a groundwork for future research as well as new perspectives in this growing field.

Optical Parametric Generation and Amplification (Laser Science And Technology Ser. #Vol. 19.)

by Jing-Yuan Zhang

This volume considers optical parametric generation and amplification (OPG/OPA), as a means for producing a tunable optical parametric device. It reviews the OPA/OPG systems using various crystals pumped by lasers at various frequencies with pulse duration ranging from picoseconds to femtoseconds. Part two covers the theoretical background for design of an OPA/OPG system, using two newly discovered nonlinear crystals. Experimental design considerations are discussed in section three, including the section of nonlinear crystals, pumping sources and optical configurations. In section four, the experimental results obtained are compared with the theoretical calculations.

Optical Payloads for Space Missions

by Shen-En Qian

Optical Payloads for Space Missions is a comprehensive collection of optical spacecraft payloads with contributions by leading international rocket-scientists and instrument builders. * Covers various applications, including earth observation, communications, navigation, weather, and science satellites and deep space exploration * Each chapter covers one or more specific optical payload * Contains a review chapter which provides readers with an overview on the background, current status, trends, and future prospects of the optical payloads * Provides information on the principles of the optical spacecraft payloads, missions' background, motivation and challenges, as well as the scientific returns, benefits and applications

Optical Phenomenology and Applications: Infrastructure Materials And Health Monitoring For The Environment (Smart Sensors, Measurement and Instrumentation #28)

by Masoud Ghandehari

This book is an introduction to techniques and applications of optical methods for materials Characterization in civil and environmental engineering. Emphasizing chemical sensing and diagnostics, it is written for students and researchers studying the physical and chemical processes in manmade or natural materials. Optical Phenomenology and Applications - Health Monitoring for Infrastructure Materials and the Environment, describes the utility of optical-sensing technologies in applications that include monitoring of transport processes and reaction chemistries in materials of the infrastructure and the subsurface environment. Many of the applications reviewed will address long standing issues in infrastructure health monitoring such as the alkali silica reaction, the role of pH in materials degradation, and the remote and inset characterization of the subsurface environment. The remarkable growth in photonics has contributed immensely to transforming bench-top optical instruments to compact field deployable systems. This has also contributed to optical sensors for environmental sensing and infrastructure health monitoring. Application of optical waveguides and full field imaging for civil and environmental engineering application is introduced and chemical and physical recognition strategies are presented; this is followed by range of filed deployable applications. Emphasizing system robustness, and long-term durability, examples covered include in-situ monitoring of transport phenomena, imaging degradation chemistries, and remote sensing of the subsurface ground water.

Optical Polarimetric Modalities for Biomedical Research (Biological and Medical Physics, Biomedical Engineering)

by Nirmal Mazumder Yury V. Kistenev Ekaterina Borisova Shama Prasada K.

This book focuses on polarization microscopy, a powerful optical tool used to study anisotropic properties in biomolecules, and its enormous potential to improve diagnostic tools for various biomedical research. The interaction of polarized light with normal and abnormal regions of tissue reveals structural information associated with its pathological condition. Diagnosis using conventional microscopy can be time-consuming, as pathologists require an hour to freeze and stain tissue slices from suspected patients. In comparison, polarization microscopy more quickly distinguishes abnormal tissue and provides better microstructural information of samples, even in the absence of staining. This book provides a basic understanding of the properties of polarized light, a description of the polarization microscope, and a mathematical formalism of Mueller matrix polarimetry. The authors discuss various advanced linear and nonlinear optical techniques such as optical coherence tomography (OCT), reflectance and transmission spectroscopy, fluorescence, multiphoton excitation, second harmonic generation, Raman microscopy, and more. They explore the exciting potential of integrating polarimetry with these techniques for possible applications in different areas of biomedical research, as well as the associated challenges. Including the most recent developments on the topic, this book serves as a modern guide to polarization microscopy and advancements in its use in biomedical research.

Optical Polymer Waveguides: From the Design to the Final 3D-Opto Mechatronic Integrated Device

by Jörg Franke Ludger Overmeyer Norbert Lindlein Karlheinz Bock Stefan Kaierle Oliver Suttmann Klaus-Jürgen Wolter

Light signals in optical waveguides can be used to transmit very large amounts of data quickly and largely without interference. In the industrial and infrastructural sectors, e.g. in the automotive and aerospace industries, the demand to further exploit this potential is therefore increasing. Which technologies can be used to effectively integrate systems that transmit data by means of light into existing components? This is a central question for current research. So far, there have been some technical limitations in this regard. For example, it is difficult to couple the signal of an optical waveguide to other optical waveguides without interruption. There is also a lack of suitable fabrication technologies for three-dimensional waveguides, as well as design and simulation environments for 3D opto-MID. This book addresses these and other challenges.

Optical Precursors: From Classical Waves to Single Photons

by Jf Chen Shengwang Du Heejeong Jeong Mmt Loy

Ever since Einstein's special relativity in 1905, the principle of invariant light speed in vacuum has been attracting attention from a wide range of disciplines. How to interpret the principle of light speed? Is light referred to continuous light, or light pulse with definite boundaries? Recent discovery of superluminal medium triggered vigorous discussion within the Physics community. Can communication via such "superluminal channel" break the speed limit and thus violate causality principle? Or, will a single photon, which is not governed by classical laws of Physics, tend to break the speed limit? To solve these problems, this Brief brings in Optical Precursors, the theoretical works for which started as early as 1914. This is a typical optical phenomenon combining wave propagation theory and light-wave interaction. Both theory and experimental works are covered in this Brief. The study of precursor verifies that the effective information carried by light pulses can never exceed the speed of light in vacuum- c. Further, through observation from nonclassical single photon source, the precursor rules out the probability of a single photon traveling with the speed, breaking the classical limit.

Optical Properties and Applications of Semiconductors

by Inamuddin

Semiconductors with optical characteristics have found widespread use in evolving semiconductor photovoltaics, where optical features are important. The industrialization of semiconductors and their allied applications have paved the way for optical measurement techniques to be used in new ways. Due to their unique properties, semiconductors are key components in the daily employed technologies in healthcare, computing, communications, green energy, and a range of other uses. This book examines the fundamental optical properties and applications of semiconductors. It summarizes the information as well as the optical characteristics and applicability of semiconductors through an in-depth review of the literature. Accomplished experts in the field share their knowledge and examine new developments. FEATURES Comprehensive coverage of all types of optical applications using semiconductors Explores relevant composite materials and devices for each application Addresses the optical properties of crystalline and amorphous semiconductors Describes new developments in the field and future potential applications Optical Properties and Applications of Semiconductors is a comprehensive reference and an invaluable resource for engineers, scientists, academics, and industry R&D teams working in applied physics.

Optical Properties and Remote Sensing of Inland and Coastal Waters

by Robert P. Bukata John H. Jerome Alexander S. Kondratyev Dimitry V. Pozdnyakov

Optical Properties and Remote Sensing of Inland and Coastal Waters discusses the methodology and the theoretical basis of remote sensing of water. It presents physical concepts of aquatic optics relevant to remote sensing techniques and outlines the problems of remote measurements of the concentrations of organic and inorganic matter in water. It also details the mathematical formulation of the processes governing water-radiation interactions and discusses the development of bio-optical models to incorporate optically complex bodies of water into remote sensing projects. Optical Properties and Remote Sensing of Inland and Coastal Waters derives and evaluates the interrelationships among inherent optical properties of natural water, water color, water quality, primary production, volume reflectance spectra, and remote sensing. This timely and comprehensive text/reference addresses the increasing tendency toward multinational and multidisciplinary climate studies and programs.

Optical Properties of Advanced Materials

by Shin-Ya Koshihara Yoshinobu Aoyagi Koki Takanashi Kotaro Kajikawa Katsuhiko Fujita Shin-Ichiro Inoue Yoichi Takanishi

In the last decade, optically functionalized materials have developed rapidly, from bulk matters to structured forms. Now we have a rich variety of attractive advanced materials. They are applied to optical and electrical devices that support the information communication technology in the mid 21-th century. Accordingly, it is quite important to have a broad knowledge of the optical properties of advanced materials for students, scientists and engineers working in optics and related fields. This book is designed to teach fundamental optical properties of such advanced materials effectively. These materials have their own peculiarities which are very interesting in modern optical physics and also for applications because the concepts of optical properties are quite different from those in conventional optical materials. Hence each chapter starts to review the basic concepts of the materials briefly and proceeds to the practical use. The important topics covered in this book include: quantum structures of semiconductors, spintronics, photonic crystals, surface plasmons in metallic nanostructures, photonic metamaterials, liquid crystal materials, organic LED materials and magnet-optics.

Optical Properties of Bismuth-Based Topological Insulators

by Paola Pietro

Topological Insulators (TIs) are insulators in the bulk, but have exotic metallic states at their surfaces. The topology, associated with the electronic wavefunctions of these systems, changes when passing from the bulk to the surface. This work studies, by means of infrared spectroscopy, the low energy optical conductivity of Bismuth based TIs in order to identify the extrinsic charge contribution of the bulk and to separate it from the intrinsic contribution of the surface state carriers. The extensive results presented in this thesis definitely shows the 2D character of the carriers in Bismuth-based topological insulators. The experimental apparatus and the FTIR technique, the theory of optical properties and Surface Plasmon Polaritons, as well as sample preparation of both crystals and thin films, and the analysis procedures are thoroughly described.

Optical Properties of Functional Polymers and Nano Engineering Applications (Nanotechnology and Application Series)

by Vaibhav Jain Akshay Kokil

Optical Properties of Functional Polymers and Nano Engineering Applications provides a basic introduction to the optical properties of polymers, as well as a systematic overview of the latest developments in their nano engineering applications. Covering an increasingly important class of materials relevant not only in academic research but also in industry, this comprehensive text: Considers the advantages of the liquid gradient refractive index (L-GRIN) lenses over the conventional solid lenses Explores the electrochemistry of photorefractive polymers, the molecular structure of commonly used polymers, and various 3D holographic displays Discusses gene detection using the optical properties of conjugated polymers Highlights the physics of fluorescence in photoluminescent polymers, and energy and electron transfer mechanisms Introduces conventional polymer ion sensors based on the optical sensors of conjugated polymers prepared by click chemistry reactions Explains colorimetric visual detection of ions by donor–acceptor chromophores Describes optical sensors based on fluorescent polymers and for the detection of explosives and metal ion analytes Addresses holographic polymer-dispersed liquid crystal technology, its optical setups, and its applications in organic lasers Presents cutting-edge research on electrochromic devices, along with new concepts, prototypes, commercial products, and future prospects Demonstrates new techniques for creating nanoscale morphologies through self-assembly, which affect the optical properties of the functional polymers Optical Properties of Functional Polymers and Nano Engineering Applications emphasizes the importance of nano engineering in improving the fundamental optical properties of the functional polymers, elaborating on high-level research while thoroughly explaining the underlying principles.

Optical Properties of Metal Oxide Nanostructures (Progress in Optical Science and Photonics #26)

by Vijay Kumar Irfan Ayoub Vishal Sharma Hendrik C. Swart

This book highlights the optical properties of metal oxides at both the fundamental and applied level and their use in various applications. The book offers a basic understanding of the optical properties and related spectroscopic techniques essential for anyone interested in learning about metal oxide nanostructures. This is partly due to the fact that optical properties are closely associated with other properties and functionalities (e.g., electronic, magnetic, and thermal), which are of essential significance to many technological applications, such as optical data communications, imaging, lighting, and displays, life sciences, health care, security, and safety. The book also highlights the fundamentals and systematic developments in various optical techniques to achieve better characterization, cost-effective, user-friendly approaches, and most importantly, state-of-the-art developing methodologies for various scientific and technological applications. It provides an adequate understanding of the imposed limitations and highlights the prospects and challenges associated with optical analytical methods to achieve the desired performance in targeted applications.

Optical Properties of Metallic Nanoparticles

by Andreas Trügler

This book introduces the fascinating world of plasmonics and physics at the nanoscale, with a focus on simulations and the theoretical aspects of optics and nanotechnology. A research field with numerous applications, plasmonics bridges the gap between the micrometer length scale of light and the secrets of the nanoworld. This is achieved by binding light to charge density oscillations of metallic nanostructures, so-called surface plasmons, which allow electromagnetic radiation to be focussed down to spots as small as a few nanometers. The book is a snapshot of recent and ongoing research and at the same time outlines our present understanding of the optical properties of metallic nanoparticles, ranging from the tunability of plasmonic resonances to the ultrafast dynamics of light-matter interaction. Beginning with a gentle introduction that highlights the basics of plasmonic interactions and plasmon imaging, the author then presents a suitable theoretical framework for the description of metallic nanostructures. This model based on this framework is first solved analytically for simple systems, and subsequently through numerical simulations for more general cases where, for example, surface roughness, nonlinear and nonlocal effects or metamaterials are investigated.

Optical Properties of Nanoparticle Systems: Mie and Beyond

by Michael Quinten

Filling the gap for a description of the optical properties of small particles with sizes less than 1000 nm and to provide a comprehensive overview on the spectral behavior of nanoparticulate matter, this is the most up-to-date reference on the optical physics of nanoparticle systems. The author, an expert in the field with both academic and industrial experience, concentrates on the linear optical properties, elastic light scattering and absorption of single nanoparticles and on reflectance and transmittance of nanoparticle matter.

Optical Properties of Nanostructured Metallic Systems

by Sergio G. Rodrigo

The common belief is that light is completely reflected by metals. In reality they also exhibit an amazing property that is not so widely known: under some conditions light flows along a metallic surface as if it were glued to it. Physical phenomena related to these light waves, which are called Surface Plasmon Polaritons (SPP), have given rise to the research field of plasmonics. This thesis explores four interesting topics within plasmonics: extraordinary optical transmission, negative refractive index metamaterials, plasmonic devices for controlling SPPs, and field enhancement phenomena near metal nanoparticles.

Optical Properties of Solar Absorber Materials and Structures (Topics in Applied Physics #142)

by Liang-Yao Chen

This book presents an overview of both the theory and experimental methods required to realize high efficiency solar absorber devices. It begins with a historical description of the study of spectrally selective solar absorber materials and structures based on optical principles and methods developed over the past few decades. The optical properties of metals and dielectric materials are addressed to provide the background necessary to achieve high performance of the solar absorber devices as applied in the solar energy field. In the following sections, different types of materials and structures, together with the relevant experimental methods, are discussed for practical construction and fabrication of the solar absorber devices, aiming to maximally harvest the solar energy while at the same time effectively suppressing the heat-emission loss. The optical principles and methods used to evaluate the performance of solar absorber devices with broad applications in different physical conditions are presented. The book is suitable for graduate students in applied physics, and provides a valuable reference for researchers working actively in the field of solar energy.

Optical Properties of Wood: Measurement Methods and Result Evaluations (Smart Sensors, Measurement and Instrumentation #45)

by László Tolvaj

This book describes all optical properties of wooden materials, including definitions and measurement methods of optical parameters such as absorbance, diffuse and specular reflectance, colour and gloss. Basic knowledge regarding the reflectance measurement in the ultraviolet, visible, near- and middle infrared radiation ranges is also discussed. It examines conducting correct optical measurements, as well as introduces the validity limits of the individual methods. Steaming as an environmental-friendly colour modification process is introduced by the description of the steaming properties of eight species. Steaming schedules for wood-working industry are suggested to create optimum colour modification. Natural and artificial aspects of photodegradation are monitored by studying the colour change and using infrared reflectance spectrum measurement. The effect of influencing parameters such as temperature, relative air humidity and leaching effect of rain is also discussed. Combined effects of heat and light on the optical properties of wood in all possible combinations are presented. The book helps wood researchers and Ph.D. students perform correct and repeatable optical measurements and evaluations in order to draw the right conclusions.

Refine Search

Showing 41,851 through 41,875 of 62,068 results