Browse Results

Showing 42,176 through 42,200 of 64,344 results

Nondestructive Testing and Evaluation of Fiber-Reinforced Composite Structures

by Shuncong Zhong Walter Nsengiyumva

This book presents a detailed description of the most common nondestructive testing(NDT) techniques used for the testing and evaluation fiber-reinforced composite structures, during manufacturing and/or in service stages. In order to facilitate the understanding and the utility of the different NDT techniques presented, the book first provides some information regarding the defects and material degradation mechanisms observed in fiber-reinforced composite structures as well as their general description and most probable causes. It is written based on the extensive scientific research and engineering backgrounds of the authors in the NDT and structural health monitoring (SHM) of structural systems from various areas including electrical, mechanical, materials, civil and biomedical engineering. Pursuing a rigorous approach, the book establishes a fundamental framework for the NDT of fiber-reinforced composite structures, while emphasizing on the importance of technique’s spatial resolution, integrated systems analysis and the significance of the influence stemming from the applicability of the NDT and the physical parameters of the test structures in the selection and utilization of adequate NDT techniques.The book is intended for students who are interested in the NDT of fiber-reinforced composite structures, researchers investigating the applicability of different NDT techniques to the inspections of structural systems, and NDT researchers and engineers working on the optimization of NDT systems for specific applications involving the use of fiber-reinforced composite structures.

Nondestructive Testing of Materials and Structures

by Mehmet Ali Taşdemir Oral Büyüköztürk Oğuz Güneş Yılmaz Akkaya

Condition assessment and characterization of materials and structures by means of nondestructive testing (NDT) methods is a priority need around the world to meet the challenges associated with the durability, maintenance, rehabilitation, retrofitting, renewal and health monitoring of new and existing infrastructures including historic monuments. Numerous NDT methods that make use of certain components of the electromagnetic and acoustic spectrum are currently in use to this effect with various levels of success and there is an intensive worldwide research effort aimed at improving the existing methods and developing new ones. The knowledge and information compiled in this book captures the current state of the art in NDT methods and their application to civil and other engineering materials and structures. Critical reviews and advanced interdisciplinary discussions by world-renowned researchers point to the capabilities and limitations of the currently used NDT methods and shed light on current and future research directions to overcome the challenges in their development and practical use. In this respect, the contents of this book will equally benefit practicing engineers and researchers who take part in characterization, assessment and health monitoring of materials and structures.

Nondigestible Carbohydrates and Digestive Health (Institute of Food Technologists Series)

by Teri M. Paeschke William R. Aimutis

Featuring authors from academia as well as industry, this book provides a broad view of carbohydrates influencing digestive health. Part 1 is a general overview of carbohydrates that function as prebiotics or fermentable carbohydrates. Part 2 is a more in depth examination of specific carbohydrates for digestive health and applications. This book provides an in-depth review and thorough foundation for food scientists, product developers and nutrition scientists seeking to understand the digestive health implications of carbohydrates. Key features: Analyzes the most active fields of research currently performed on nondigestible carbohydrates Focuses on the growing opportunity to deliver digestive health benefits through fibers and other novel carbohydrates Authors include highly recognized researchers from academe and industry experts Explores new possibilities in prebiotics and fermentable carbohydrates

Nonequilibrium Dynamics of Collective Excitations in Quantum Materials (Springer Theses)

by Edoardo Baldini

This book studies the dynamics of fundamental collective excitations in quantum materials, focusing on the use of state-of-the-art ultrafast broadband optical spectroscopy. Collective behaviour in solids lies at the origin of several cooperative phenomena that can lead to profound transformations, instabilities and phase transitions. Revealing the dynamics of collective excitations is a topic of pivotal importance in contemporary condensed matter physics, as it provides information on the strength and spatial distribution of interactions and correlation. The experimental framework explored in this book relies on setting a material out-of-equilibrium by an ultrashort laser pulse and monitoring the photo-induced changes in its optical properties over a broad spectral region in the visible or deep-ultraviolet. Collective excitations (e.g. plasmons, excitons, phonons…) emerge either in the frequency domain as spectral features across the probed range, or in the time domain as coherent modes triggered by the pump pulse. Mapping the temporal evolution of these collective excitations provides access to the hierarchy of low-energy phenomena occurring in the solid during its path towards thermodynamic equilibrium. This methodology is used to investigate a number of strongly interacting and correlated materials with an increasing degree of internal complexity beyond conventional band theory.

Nonequilibrium Gas Dynamics and Molecular Simulation

by Iain D. Boyd Thomas E. Schwartzentruber

This current and comprehensive book provides an updated treatment of molecular gas dynamics topics for aerospace engineers, or anyone researching high-temperature gas flows for hypersonic vehicles and propulsion systems. It demonstrates how the areas of quantum mechanics, kinetic theory, and statistical mechanics can combine in order to facilitate the study of nonequilibrium processes of internal energy relaxation and chemistry. All of these theoretical ideas are used to explain the direct simulation Monte Carlo (DSMC) method, a numerical technique based on molecular simulation. Because this text provides comprehensive coverage of the physical models available for use in the DSMC method, in addition to the equations and algorithms required to implement the DSMC numerical method, readers will learn to solve nonequilibrium flow problems and perform computer simulations, and obtain a more complete understanding of various physical modeling options for DSMC than is available in other texts.

Nonequilibrium Phase Transitions in Driven Vortex Matter: The Reversible-Irreversible Transition, Dynamical Ordering, and Kibble-Zurek Mechanism (Springer Theses)

by Shun Maegochi

This book presents experimental studies of nonequilibrium phase transitions induced by ac and dc forces in collectively interacting systems—a superconducting vortex system with random pinning. It first shows that a phase transition from reversible to irreversible flow occurs by increasing vortex density as well as amplitude of ac shear, which is indicative of the universality of the reversible-irreversible transition. Two distinct flow regimes are also found in the reversible phase. Next, the book presents new methods for dc driven experiments—transverse mode-locking and transverse current-voltage measurements—and provides convincing evidence of the second-order dynamical transition from disordered plastic to anisotropically ordered smectic flow. Lastly it reports on the first experimental demonstration of the Kibble-Zurek mechanism for the nonequilibrium phase transition.The experimental results indicate that both the reversible-irreversible transition and the dynamical ordering transition belong to the directed percolation universality class which is one of the fundamental classes of nonequilibrium phase transitions. Hence, the findings will be generalized to other nonequilibrium systems and stimulate research on nonequilibrium physics.

Nonequilibrium Statistical Mechanics of Heterogeneous Fluid Systems

by Andrei G. Bashkirov

There is a wide variety of heterogeneous fluid systems that possess interphase surfaces. This monograph is devoted to pioneering studies in nonequilibrium statistical mechanics of such systems. Starting from the Liouville equation, the equations of surface hydrodynamics are derived with allowance for discontinuities of thermodynamic parameters of interphase boundaries. Brownian motion of a large solid particle in a fluid and nucleation are treated as results of fluctuations of flows across particle surfaces. With the use of the Gibbs method, a shock wave in a gas is considered as a sort of an interphase surface, and the surface tension of a shock front is introduced for the first time.

Nonfunctional Requirements in Mobile Application Development

by Varun Gupta Durg Singh Chauhan Raj Kumar Chopra

Nonfunctional Requirements in Mobile Application Development is an empirical study that investigates how nonfunctional requirements--as compared with functional requirements--are treated by the software engineers during mobile application development. The book empirically analyzes the contribution of nonfunctional requirements to project parameters such as cost, time, and quality. Such parameters are of prime interest as they determine the survival of organizations in highly dynamic environments. The impact of nonfunctional requirements on project success is analyzed through surveys and case studies, both individually and relative to each other. Sources for data collection include industry, academia, and literature. The book also empirically studies the impact of nonfunctional requirements on the overall business success of both the software development firm and the software procuring firm. Project success is examined to determine if it leads to business success. The book provides rich empirical evidence to place nonfunctional requirements on par with functional requirements to achieve business success in highly competitive markets. This work enhances the body of knowledge through multiple empirical research methods including surveys, case studies, and experimentation to study software engineers' focus on nonfunctional requirements at both project and business levels. The book can guide both computer scientists and business managers in devising theoretical and technical solutions for software release planning to achieve business success.

Nonfunctional Requirements in Systems Analysis and Design

by Kevin Macg. Adams

This book will help readers gain a solid understanding of non-functional requirements inherent in systems design endeavors. It contains essential information for those who design, use and maintain complex engineered systems, including experienced designers, teachers of design, system stakeholders and practicing engineers. Coverage approaches non-functional requirements in a novel way by presenting a framework of four systems concerns into which the 27 major non-functional requirements fall: sustainment, design, adaptation and viability. Within this model, the text proceeds to define each non-functional requirement, to specify how each is treated as an element of the system design process and to develop an associated metric for their evaluation. Systems are designed to meet specific functional needs. Because non-functional requirements are not directly related to tasks that satisfy these proposed needs, designers and stakeholders often fail to recognize the importance of such attributes as availability, survivability, and robustness. This book gives readers the tools and knowledge they need to both recognize the importance of these non-functional requirements and incorporate them in the design process.

Nonimaging Optics: Solar and Illumination System Methods, Design, and Performance (Optical Sciences and Applications of Light #7785)

by Roland Winston Lun Jiang Vladimir Oliker

This book provides a comprehensive look at the science, methods, designs, and limitations of nonimaging optics. It begins with an in-depth discussion on thermodynamically efficient optical designs and how they improve the performance and cost effectiveness of solar concentrating and illumination systems. It then moves into limits to concentration, imaging devices and their limitations, and the theory of furnaces and its applications to optical design. Numerous design methods are discussed in detail followed by chapters of estimating the performance of a nonimaging design and pushing their limits of concentration. Exercises and worked examples are included throughout.

Noninvasive Physiological Measurement: Wireless Microwave Sensing

by James C. Lin

This book explains the principles and techniques of microwave physiological sensing and introduces fundamental results of the noninvasive sensing of physiological signatures, vital signs, as well as life detection. Specifically, noninvasive microwave techniques for contact, contactless, and remote sensing of circulatory and respiratory movements and physiological volume changes are discussed.Noninvasive Physiological Measurement: Wireless Microwave Sensing, is written by a pioneering researcher in microwave noninvasive physiological sensing and leading global expert in microwaves in biology and medicine. The book reviews current advances in noninvasive cardiopulmonary sensing technology and measurement. It includes measurements of the vital signs and physiological signatures from laboratory and clinical testing. The book discusses the applicable domains and scenarios in which there is an interaction of radio frequency (RF) and microwaves with biological matter in gas, fluid, or solid form, both from inside and outside of the human or animal body. The book also provides examples for healthcare monitoring and diagnostic applications through wearables, devices, or remote contactless sensors for physiological signals and signature, vital signs, and body motion sensing. This book is an essential guide to understanding the human body’s interaction with microwaves and noninvasive physiological sensing and monitoring.This book is intended for researchers and professionals in biomedical, electrical, and computer engineering with an interest in antenna, sensors, microwaves, signal processing, and medical applications. It will also be of interest to healthcare professionals, technologists, and practitioners interested in noninvasive physiological sensing and patient monitoring.

Noninvasive Vascular Diagnosis

by Ali F. Aburahma

The book provides the newest definitive text on the current techniques used in assessing vascular disorders. Readers will receive authoritative information and will be guided through the establishment and accreditation of a vascular laboratory and introduced to the physics of diagnostic testing. The chapters comprehensively explain the use of ultrasound in diagnosing cerebrovascular, renovascular, visceral ischemia and peripheral arterial disease, as well as venous disorders and deep abdominal vascular conditions. The book contains over 300 illustrations, many of them in color. The book will be invaluable to physicians who treat vascular disorders, surgeons, cardiologists, vascular radiologists and the vascular laboratory staff.

Nonlinear Acoustical Imaging

by Woon Siong Gan

This book first introduced the theoretical foundation of nonlinear acoustics such as the basic equations of nonlinear acoustics followed by a statistical mechanics approach to nonlinear acoustics, then a curvilinear spacetime approach to nonlinear acoustics, then a gauge invariance approach to nonlinear acoustics, and application of chaos theory to nonlinear acoustics. Various formats of nonlinear acoustical imaging are given such as B/A nonlinear parameter acoustical imaging, fractal imaging, harmonics imaging, nonclassical nonlinear acoustical imaging, and modulation method in nonlinear acoustical imaging with their applications.

Nonlinear Analysis for Human Movement Variability

by Nicholas Stergiou

How Does the Body’s Motor Control System Deal with Repetition? While the presence of nonlinear dynamics can be explained and understood, it is difficult to be measured. A study of human movement variability with a focus on nonlinear dynamics, Nonlinear Analysis for Human Movement Variability, examines the characteristics of human movement within this framework, explores human movement in repetition, and explains how and why we analyze human movement data. It takes an in-depth look into the nonlinear dynamics of systems within and around us, investigates the temporal structure of variability, and discusses the properties of chaos and fractals as they relate to human movement. Providing a foundation for the use of nonlinear analysis and the study of movement variability in practice, the book describes the nonlinear dynamical features found in complex biological and physical systems, and introduces key concepts that help determine and identify patterns within the fluctuations of data that are repeated over time. It presents commonly used methods and novel approaches to movement analysis that reveal intriguing properties of the motor control system and introduce new ways of thinking about variability, adaptability, health, and motor learning. In addition, this text: Demonstrates how nonlinear measures can be used in a variety of different tasks and populations Presents a wide variety of nonlinear tools such as the Lyapunov exponent, surrogation, entropy, and fractal analysis Includes examples from research on how nonlinear analysis can be used to understand real-world applications Provides numerous case studies in postural control, gait, motor control, and motor development Nonlinear Analysis for Human Movement Variability advances the field of human movement variability research by dissecting human movement and studying the role of movement variability. The book proposes new ways to use nonlinear analysis and investigate the temporal structure of variability, and enables engineers, movement scientists, clinicians, and those in related disciplines to effectively apply nonlinear analysis in practice.

Nonlinear Analysis of Thin-Walled Smart Structures (Springer Tracts in Mechanical Engineering)

by Shun-Qi Zhang

This book focuses on nonlinear finite element analysis of thin-walled smart structures integrated with piezoelectric materials. Two types of nonlinear phenomena are presented in the book, namely geometrical nonlinearity and material nonlinearity. Geometrical nonlinearity mainly results from large deformations and large rotations of structures. The book discusses various geometrically nonlinear theories including von Kármán type nonlinear theory, moderate rotation nonlinear theory, fully geometrically nonlinear theory with moderate rotations and large rotation nonlinear theory. The material nonlinearity mainly considered in this book is electroelastic coupled nonlinearity resulting from large driving electric field. This book will be a good reference for students and researchers in the field of structural mechanics.

Nonlinear Analysis: Problems, Applications and Computational Methods (Lecture Notes in Networks and Systems #168)

by Zakia Hammouch Hemen Dutta Said Melliani Michael Ruzhansky

This book is a collection of original research papers as proceedings of the 6th International Congress of the Moroccan Society of Applied Mathematics organized by Sultan Moulay Slimane University, Morocco, during 7th–9th November 2019. It focuses on new problems, applications and computational methods in the field of nonlinear analysis. It includes various topics including fractional differential systems of various types, time-fractional systems, nonlinear Jerk equations, reproducing kernel Hilbert space method, thrombin receptor activation mechanism model, labour force evolution model, nonsmooth vector optimization problems, anisotropic elliptic nonlinear problem, viscous primitive equations of geophysics, quadratic optimal control problem, multi-orthogonal projections and generalized continued fractions. The conference aimed at fostering cooperation among students, researchers and experts from diverse areas of applied mathematics and related sciences through fruitful deliberations on new research findings. This book is expected to be resourceful for researchers, educators and graduate students interested in applied mathematics and interactions of mathematics with other branches of science and engineering.

Nonlinear and Complex Dynamics

by José António Machado Albert C. Luo Dumitru Baleanu

Nonlinear Dynamics of Complex Systems describes chaos, fractal and stochasticities within celestial mechanics, financial systems and biochemical systems. Part I discusses methods and applications in celestial systems and new results in such areas as low energy impact dynamics, low-thrust planar trajectories to the moon and earth-to-halo transfers in the sun, earth and moon. Part II presents the dynamics of complex systems including bio-systems, neural systems, chemical systems and hydro-dynamical systems. Finally, Part III covers economic and financial systems including market uncertainty, inflation, economic activity and foreign competition and the role of nonlinear dynamics in each.

Nonlinear and Nonequilibrium Dynamics of Quantum-Dot Optoelectronic Devices

by Benjamin Lingnau

This thesis sheds light on the unique dynamics of optoelectronic devices based on semiconductor quantum-dots. The complex scattering processes involved in filling the optically active quantum-dot states and the presence of charge-carrier nonequilibrium conditions are identified as sources for the distinct dynamical behavior of quantum-dot based devices. Comprehensive theoretical models, which allow for an accurate description of such devices, are presented and applied to recent experimental observations. The low sensitivity of quantum-dot lasers to optical perturbations is directly attributed to their unique charge-carrier dynamics and amplitude-phase-coupling, which is found not to be accurately described by conventional approaches. The potential of quantum-dot semiconductor optical amplifiers for novel applications such as simultaneous multi-state amplification, ultra-wide wavelength conversion, and coherent pulse shaping is investigated. The scattering mechanisms and the unique electronic structure of semiconductor quantum-dots are found to make such devices prime candidates for the implementation of next-generation optoelectronic applications, which could significantly simplify optical telecommunication networks and open up novel high-speed data transmission schemes.

Nonlinear Approaches in Engineering Application: Design Engineering Problems

by Liming Dai Reza N. Jazar

Nonlinear Approaches in Engineering Applications: Design Engineering Problems examines the latest applications of nonlinear approaches in engineering and addresses a range of scientific problems. Chapters are authored by world-class scientists and researchers and focus on the application of nonlinear approaches in different disciplines of engineering and scientific applications, with a strong emphasis on application, physical meaning, and methodologies of the approaches. Topics covered are of high interest in engineering and physics, and an attempt has been made to expose engineers and researchers to a broad range of practical topics and approaches. This book is appropriate for researchers, students, and practicing engineers who are interested in the applications of engineering, physics, and mathematics in nonlinear approaches to solving engineering and science problems.

Nonlinear Approaches in Engineering Application: Automotive Engineering Problems

by Reza N. Jazar Liming Dai

This book focuses on the latest applications of nonlinear approaches in engineering and addresses a range of scientific problems. Examples focus on issues in automotive technology with a strong emphasis on application, physical meaning, and methodologies of the approaches. The book’s chapters are written by world-class experts who advance the future of engineering by discussing the development of more optimal, accurate, efficient, cost, and energy-effective systems. Topics covered are of high interest in engineering and physics, and an attempt has been made to expose engineers and researchers to a broad range of practical topics and approaches. Nonlinear Approaches in Engineering Application: Automotive Engineering Problems is appropriate for researchers, students, and practicing engineers interested in the applications of nonlinear approaches to solving engineering and science problems.

Nonlinear Approaches in Engineering Applications

by Liming Dai Reza N. Jazar

Nonlinear Approaches in Engineering Applications focuses on nonlinear phenomena that are common in the engineering field. The nonlinear approaches described in this book provide a sound theoretical base and practical tools to design and analyze engineering systems with high efficiency and accuracy and with less energy and downtime. Presented here are nonlinear approaches in areas such as dynamic systems, optimal control and approaches in nonlinear dynamics and acoustics. Coverage encompasses a wide range of applications and fields including mathematical modeling and nonlinear behavior as applied to microresonators, nanotechnologies, nonlinear behavior in soil erosion, nonlinear population dynamics, and optimization in reducing vibration and noise as well as vibration in triple-walled carbon nanotubes

Nonlinear Approaches in Engineering Applications

by Reza N. Jazar Liming Dai

Nonlinear Approaches in Engineering Applications focuses on nonlinear phenomena that are common in the engineering field. The nonlinear approaches described in this book provide a sound theoretical base and practical tools to design and analyze engineering systems with high efficiency and accuracy and with less energy and downtime. Presented here are nonlinear approaches in areas such as dynamic systems, optimal control and approaches in nonlinear dynamics and acoustics. Coverage encompasses a wide range of applications and fields including mathematical modeling and nonlinear behavior as applied to microresonators, nanotechnologies, nonlinear behavior in soil erosion,nonlinear population dynamics, and optimization in reducing vibration and noise as well as vibration in triple-walled carbon nanotubes.

Nonlinear Approaches in Engineering Applications: Automotive Applications of Engineering Problems

by Reza N. Jazar Liming Dai

This book focuses on the latest applications of nonlinear approaches in engineering and addresses a range of scientific problems. Examples focus on issues in automotive technology, including automotive dynamics, control for electric and hybrid vehicles, and autodriver algorithm for autonomous vehicles. Also included are discussions on renewable energy plants, data modeling, driver-aid methods, and low-frequency vibration. Chapters are based on invited contributions from world-class experts who advance the future of engineering by discussing the development of more optimal, accurate, efficient, cost, and energy effective systems. This book is appropriate for researchers, students, and practising engineers who are interested in the applications of nonlinear approaches to solving engineering and science problems.Presents a broad range of practical topics and approaches;Explains approaches to better, safer, and cheaper systems;Emphasises automotive applications, physical meaning, and methodologies.

Nonlinear Approaches in Engineering Applications: Advanced Analysis Of Vehicle Related Technology

by Reza N. Jazar Liming Dai

Nonlinear Approaches in Engineering Applications focuses on nonlinear phenomena that are common in the engineering field. The nonlinear approaches described in this book provide a sound theoretical base and practical tools to design and analyze engineering systems with high efficiency and accuracy and with less energy and downtime. Presented here are nonlinear approaches in areas such as dynamic systems, optimal control and approaches in nonlinear dynamics and acoustics. Coverage encompasses a wide range of applications and fields including mathematical modeling and nonlinear behavior as applied to microresonators, nanotechnologies, nonlinear behavior in soil erosion,nonlinear population dynamics, and optimization in reducing vibration and noise as well as vibration in triple-walled carbon nanotubes.

Nonlinear Behaviour and Stability of Thin-Walled Shells

by Olexandr G. Lebedeyev Vasilii A. Gromov Natalia I. Obodan

This book focuses on the nonlinear behaviour of thin-wall shells (single- and multilayered with delamination areas) under various uniform and non-uniform loadings. The dependence of critical (buckling) load upon load variability is revealed to be highly non-monotonous, showing minima when load variability is close to the eigenmode variabilities of solution branching points of the respective nonlinear boundary problem. A novel numerical approach is employed to analyze branching points and to build primary, secondary, and tertiary bifurcation paths of the nonlinear boundary problem for the case of uniform loading. The load levels of singular points belonging to the paths are considered to be critical load estimates for the case of non-uniform loadings.

Refine Search

Showing 42,176 through 42,200 of 64,344 results