- Table View
- List View
Metaheuristic Computation: A Performance Perspective (Intelligent Systems Reference Library #195)
by Erik Cuevas Primitivo Diaz Octavio CamarenaThis book is primarily intended for undergraduate and postgraduate students of Science, Electrical Engineering, or Computational Mathematics. Metaheuristic search methods are so numerous and varied in terms of design and potential applications; however, for such an abundant family of optimization techniques, there seems to be a question which needs to be answered: Which part of the design in a metaheuristic algorithm contributes more to its better performance? Several works that compare the performance among metaheuristic approaches have been reported in the literature. Nevertheless, they suffer from one of the following limitations: (A)Their conclusions are based on the performance of popular evolutionary approaches over a set of synthetic functions with exact solutions and well-known behaviors, without considering the application context or including recent developments. (B) Their conclusions consider only the comparison of their final results which cannot evaluate the nature of a good or bad balance between exploration and exploitation. The objective of this book is to compare the performance of various metaheuristic techniques when they are faced with complex optimization problems extracted from different engineering domains. The material has been compiled from a teaching perspective.
Metaheuristic Optimization Algorithms in Civil Engineering: New Applications (Studies in Computational Intelligence #900)
by Ali Kaveh Armin Dadras EslamlouThis book discusses the application of metaheuristic algorithms in a number of important optimization problems in civil engineering. Advances in civil engineering technologies require greater accuracy, efficiency and speed in terms of the analysis and design of the corresponding systems. As such, it is not surprising that novel methods have been developed for the optimal design of real-world systems and models with complex configurations and large numbers of elements. This book is intended for scientists, engineers and students wishing to explore the potential of newly developed metaheuristics in practical problems. It presents concepts that are not only applicable to civil engineering problems, but can also used for optimizing problems related to mechanical, electrical, and industrial engineering. It is an essential resource for civil, mechanical and electrical engineers who use optimization methods for design, as well as for students and researchers interested in structural optimization.
Metaheuristic Optimization for the Design of Automatic Control Laws
by Guillaume SandouThe classic approach in Automatic Control relies on the use of simplified models of the systems and reformulations of the specifications. In this framework, the control law can be computed using deterministic algorithms. However, this approach fails when the system is too complex for its model to be sufficiently simplified, when the designer has many constraints to take into account, or when the goal is not only to design a control but also to optimize it. This book presents a new trend in Automatic Control with the use of metaheuristic algorithms. These kinds of algorithm can optimize any criterion and constraint, and therefore do not need such simplifications and reformulations. The first chapter outlines the author’s main motivations for the approach which he proposes, and presents the advantages which it offers. In Chapter 2, he deals with the problem of system identification. The third and fourth chapters are the core of the book where the design and optimization of control law, using the metaheuristic method (particle swarm optimization), is given. The proposed approach is presented along with real-life experiments, proving the efficiency of the methodology. Finally, in Chapter 5, the author proposes solving the problem of predictive control of hybrid systems. Contents 1. Introduction and Motivations. 2. Symbolic Regression. 3. PID Design Using Particle Swarm Optimization. 4. Tuning and Optimization of H-infinity Control Laws. 5. Predictive Control of Hybrid Systems. About the Authors Guillaume Sandou is Professor in the Automatic Department of Supélec, in Gif Sur Yvette, France. He has had 12 books, 8 journal papers and 1 patent published, and has written papers for 32 international conferences.His main research interests include modeling, optimization and control of industrial systems; optimization and metaheuristics for Automatic Control; and constrained control.
Metaheuristic Optimization: Nature-Inspired Algorithms Swarm and Computational Intelligence, Theory and Applications (Studies in Computational Intelligence #927)
by Modestus O. Okwu Lagouge K. TartibuThis book exemplifies how algorithms are developed by mimicking nature. Classical techniques for solving day-to-day problems is time-consuming and cannot address complex problems. Metaheuristic algorithms are nature-inspired optimization techniques for solving real-life complex problems. This book emphasizes the social behaviour of insects, animals and other natural entities, in terms of converging power and benefits. Major nature-inspired algorithms discussed in this book include the bee colony algorithm, ant colony algorithm, grey wolf optimization algorithm, whale optimization algorithm, firefly algorithm, bat algorithm, ant lion optimization algorithm, grasshopper optimization algorithm, butterfly optimization algorithm and others. The algorithms have been arranged in chapters to help readers gain better insight into nature-inspired systems and swarm intelligence. All the MATLAB codes have been provided in the appendices of the book to enable readers practice how to solve examples included in all sections. This book is for experts in Engineering and Applied Sciences, Natural and Formal Sciences, Economics, Humanities and Social Sciences.
Metaheuristics Algorithms in Power Systems (Studies in Computational Intelligence #822)
by Erik Cuevas Emilio Barocio Espejo Arturo Conde EnríquezThis book discusses the use of efficient metaheuristic algorithms to solve diverse power system problems, providing an overview of the various aspects of metaheuristic methods to enable readers to gain a comprehensive understanding of the field and of conducting studies on specific metaheuristic algorithms related to power-system applications. By bridging the gap between recent metaheuristic techniques and novel power system methods that benefit from the convenience of metaheuristic methods, it offers power system practitioners who are not metaheuristic computation researchers insights into the techniques, which go beyond simple theoretical tools and have been adapted to solve important problems that commonly arise. On the other hand, members of the metaheuristic computation community learn how power engineering problems can be translated into optimization tasks, and it is also of interest to engineers and application developers. Further, since each chapter can be read independently, the relevant information can be quickly found. Power systems is a multidisciplinary field that addresses the multiple approaches used for design and analysis in areas ranging from signal processing, and electronics to computational intelligence, including the current trend of metaheuristic computation.
Metaheuristics and Optimization in Civil Engineering
by Sinan Melih Nigdeli Gebrail Bekdaş Xin-She YangThis timely book deals with a current topic, i. e. the applications of metaheuristic algorithms, with a primary focus on optimization problems in civil engineering. The first chapter offers a concise overview of different kinds of metaheuristic algorithms, explaining their advantages in solving complex engineering problems that cannot be effectively tackled by traditional methods, and citing the most important works for further reading. The remaining chapters report on advanced studies on the applications of certain metaheuristic algorithms to specific engineering problems. Genetic algorithm, bat algorithm, cuckoo search, harmony search and simulated annealing are just some of the methods presented and discussed step by step in real-application contexts, in which they are often used in combination with each other. Thanks to its synthetic yet meticulous and practice-oriented approach, the book is a perfect guide for graduate students, researchers and professionals willing to applying metaheuristic algorithms in civil engineering and other related engineering fields, such as mechanical, transport and geotechnical engineering. It is also a valuable aid for both lectures and advanced engineering students.
Metaheuristics and Optimization in Computer and Electrical Engineering (Lecture Notes in Electrical Engineering #696)
by Navid Razmjooy Mohsen Ashourian Zahra ForoozandehThe use of artificial intelligence, especially in the field of optimization is increasing day by day. The purpose of this book is to explore the possibility of using different kinds of optimization algorithms to advance and enhance the tools used for computer and electrical engineering purposes.
Metaheuristics and Optimization in Computer and Electrical Engineering: Volume 2: Hybrid and Improved Algorithms (Lecture Notes in Electrical Engineering #1077)
by Navid Razmjooy Noradin Ghadimi Venkatesan RajinikanthThis book discusses different methods of modifying the original metaheuristics and their application in computer and electrical engineering. As the race to develop advanced technology accelerates, a new era of "metaheuristics" has emerged. Through researched-based techniques and collaborative problem-solving, this book helps engineers to find efficient solutions to their engineering challenges. With the help of an expert guide and the collective knowledge of the engineering community, this comprehensive guide shows readers how to use machine learning and other AI techniques to reinvent smart engineering. From understanding the fundamentals to mastering the latest metaheuristics models, this guide provides with the skills and knowledge that need to stay ahead in the technology race. In the previous volume, authors focused on the application of original metaheuristics on electrical and computer sciences. This volume learns how AI and modified metaheuristics can be used to optimize algorithms and create more efficient electrical engineering designs. It gets insights on how data can be effectively processed and discover new techniques for creating sophisticated automation systems. It maximizes the potential of readers’ computer and electrical engineering projects with powerful metaheuristics and optimization techniques.
Metaheuristics for Combinatorial Optimization (Advances in Intelligent Systems and Computing #1332)
by Salvatore Greco Mario F. Pavone El-Ghazali Talbi Daniele VigoThis book presents novel and original metaheuristics developed to solve the cost-balanced traveling salesman problem. This problem was taken into account for the Metaheuristics Competition proposed in MESS 2018, Metaheuristics Summer School, and the top 4 methodologies ranked are included in the book, together with a brief introduction to the traveling salesman problem and all its variants. The book is aimed particularly at all researchers in metaheuristics and combinatorial optimization areas. Key uses are metaheuristics; complex problem solving; combinatorial optimization; traveling salesman problem.
Metaheuristics for Data Clustering and Image Segmentation (Intelligent Systems Reference Library #152)
by Meera Ramadas Ajith AbrahamIn this book, differential evolution and its modified variants are applied to the clustering of data and images. Metaheuristics have emerged as potential algorithms for dealing with complex optimization problems, which are otherwise difficult to solve using traditional methods. In this regard, differential evolution is considered to be a highly promising technique for optimization and is being used to solve various real-time problems. The book studies the algorithms in detail, tests them on a range of test images, and carefully analyzes their performance. Accordingly, it offers a valuable reference guide for all researchers, students and practitioners working in the fields of artificial intelligence, optimization and data analytics.
Metaheuristics for Finding Multiple Solutions (Natural Computing Series)
by Mike Preuss Michael G. Epitropakis Xiaodong Li Jonathan E. FieldsendThis book presents the latest trends and developments in multimodal optimization and niching techniques. Most existing optimization methods are designed for locating a single global solution. However, in real-world settings, many problems are “multimodal” by nature, i.e., multiple satisfactory solutions exist. It may be desirable to locate several such solutions before deciding which one to use. Multimodal optimization has been the subject of intense study in the field of population-based meta-heuristic algorithms, e.g., evolutionary algorithms (EAs), for the past few decades. These multimodal optimization techniques are commonly referred to as “niching” methods, because of the nature-inspired “niching” effect that is induced to the solution population targeting at multiple optima. Many niching methods have been developed in the EA community. Some classic examples include crowding, fitness sharing, clearing, derating, restricted tournament selection, speciation, etc. Nevertheless, applying these niching methods to real-world multimodal problems often encounters significant challenges.To facilitate the advance of niching methods in facing these challenges, this edited book highlights the latest developments in niching methods. The included chapters touch on algorithmic improvements and developments, representation, and visualization issues, as well as new research directions, such as preference incorporation in decision making and new application areas. This edited book is a first of this kind specifically on the topic of niching techniques.This book will serve as a valuable reference book both for researchers and practitioners. Although chapters are written in a mutually independent way, Chapter 1 will help novice readers get an overview of the field. It describes the development of the field and its current state and provides a comparative analysis of the IEEE CEC and ACM GECCO niching competitions of recent years, followed by a collection of open research questions and possible research directions that may be tackled in the future.
Metaheuristics for Production Scheduling (Iste Ser.)
by Bassem Jarboui Patrick Siarry Jacques TeghemThis book describes the potentialities of metaheuristics for solving production scheduling problems and the relationship between these two fields. For the past several years, there has been an increasing interest in using metaheuristic methods to solve scheduling problems. The main reasons for this are that such problems are generally hard to solve to optimality, as well as the fact that metaheuristics provide very good solutions in a reasonable time. The first part of the book presents eight applications of metaheuristics for solving various mono-objective scheduling problems. The second part is itself split into two, the first section being devoted to five multi-objective problems to which metaheuristics are adapted, while the second tackles various transportation problems related to the organization of production systems. Many real-world applications are presented by the authors, making this an invaluable resource for researchers and students in engineering, economics, mathematics and computer science. Contents 1. An Estimation of Distribution Algorithm for Solving Flow Shop Scheduling Problems with Sequence-dependent Family Setup Times, Mansour Eddaly, Bassem Jarboui, Radhouan Bouabda, Patrick Siarry and Abdelwaheb Rebaï. 2. Genetic Algorithms for Solving Flexible Job Shop Scheduling Problems, Imed Kacem. 3. A Hybrid GRASP-Differential Evolution Algorithm for Solving Flow Shop Scheduling Problems with No-Wait Constraints, Hanen Akrout, Bassem Jarboui, Patrick Siarry and Abdelwaheb Rebaï. 4. A Comparison of Local Search Metaheuristics for a Hierarchical Flow Shop Optimization Problem with Time Lags, Emna Dhouib, Jacques Teghem, Daniel Tuyttens and Taïcir Loukil. 5. Neutrality in Flow Shop Scheduling Problems: Landscape Structure and Local Search, Marie-Eléonore Marmion. 6. Evolutionary Metaheuristic Based on Genetic Algorithm: Application to Hybrid Flow Shop Problem with Availability Constraints, Nadia Chaaben, Racem Mellouli and Faouzi Masmoudi. 7. Models and Methods in Graph Coloration for Various Production Problems, Nicolas Zufferey. 8. Mathematical Programming and Heuristics for Scheduling Problems with Early and Tardy Penalties, Mustapha Ratli, Rachid Benmansour, Rita Macedo, Saïd Hanafi, Christophe Wilbaut. 9. Metaheuristics for Biobjective Flow Shop Scheduling, Matthieu Basseur and Arnaud Liefooghe. 10. Pareto Solution Strategies for the Industrial Car Sequencing Problem, Caroline Gagné, Arnaud Zinflou and Marc Gravel. 11. Multi-Objective Metaheuristics for the Joint Scheduling of Production and Maintenance, Ali Berrichi and Farouk Yalaoui. 12. Optimization via a Genetic Algorithm Parametrizing the AHP Method for Multicriteria Workshop Scheduling, Fouzia Ounnar, Patrick Pujo and Afef Denguir. 13. A Multicriteria Genetic Algorithm for the Resource-constrained Task Scheduling Problem, Olfa Dridi, Saoussen Krichen and Adel Guitouni. 14. Metaheuristics for the Solution of Vehicle Routing Problems in a Dynamic Context, Tienté Hsu, Gilles Gonçalves and Rémy Dupas. 15. Combination of a Metaheuristic and a Simulation Model for the Scheduling of Resource-constrained Transport Activities, Virginie André, Nathalie Grangeon and Sylvie Norre. 16. Vehicle Routing Problems with Scheduling Constraints, Rahma Lahyani, Frédéric Semet and Benoît Trouillet. 17. Metaheuristics for Job Shop Scheduling with Transportation, Qiao Zhang, Hervé Manier, Marie-Ange Manier. About the Authors Bassem Jarboui is Professor at the University of Sfax, Tunisia. Patrick Siarry is Professor at the Laboratoire Images, Signaux et Systèmes Intelligents (LISSI), University of Paris-Est Créteil, France. Jacques Teghem is Professor at the Universit
Metaheuristics for Production Systems
by El-Ghazali Talbi Farouk Yalaoui Lionel AmodeoThis book discusses the main techniques and newest trends to manage and optimize the production and service systems. The book begins by examining the three main levels of decision systems in production: the long term (strategic), the middle term (tactical) and short term (operational). It also considers online management as a new level (a sub level of the short term). As each level encounters specific problems, appropriate approaches to deal with these are introduced and explained. These problems include the line design, the line balancing optimization, the physical layout of the production or service system, the forecasting optimization, the inventory management, the scheduling etc. Metaheuristics for Production Systems then explores logistic optimization from two different perspectives: internal (production management), addressing issues of scheduling, layout and line designs, and external (supply chain management) focusing on transportation optimization, supply chain evaluation, and location of production. The book also looks at NP-hard problems that are common in production management. These complex configurations may mean that optimal solutions may not be reached due to variables, but the authors help provide a good solution for such problems. The effective new results and solutions offered in this book should appeal to researchers, managers, and engineers in the production and service industries.
Metaheuristics for Resource Deployment under Uncertainty in Complex Systems
by Panos M. Pardalos Qi Zhang Chen Chen Shuxin Ding Bin XinMetaheuristics for Resource Deployment under Uncertainty in Complex Systems analyzes how to set locations for the deployment of resources to incur the best performance at the lowest cost. Resources can be static nodes and moving nodes while services for a specific area or for customers can be provided. Theories of modeling and solution techniques are used with uncertainty taken into account and real-world applications used. The authors present modeling and metaheuristics for solving resource deployment problems under uncertainty while the models deployed are related to stochastic programming, robust optimization, fuzzy programming, risk management, and single/multi-objective optimization. The resources are heterogeneous and can be sensors and actuators providing different tasks. Both separate and cooperative coverage of the resources are analyzed. Previous research has generally dealt with one type of resource and considers static and deterministic problems, so the book breaks new ground in its analysis of cooperative coverage with heterogeneous resources and the uncertain and dynamic properties of these resources using metaheuristics. This book will help researchers, professionals, academics, and graduate students in related areas to better understand the theory and application of resource deployment problems and theories of uncertainty, including problem formulations, assumptions, and solution methods.
Metaheuristics for Structural Design and Analysis
by Yusuf Cengiz Toklu Gebrail Bekdas Sinan Melih NigdeliMetaheuristics for Structural Design and Analysis discusses general properties and types of metaheuristic techniques, basic principles of topology, shape and size optimization of structures, and applications of metaheuristic algorithms in solving structural design problems. Analysis of structures using metaheuristic algorithms is also discussed. Comparisons are made with classical methods and modern computational methods through metaheuristic algorithms. The book is designed for senior structural engineering students, graduate students, academicians and practitioners.
Metaheuristics in Machine Learning: Theory and Applications (Studies in Computational Intelligence #967)
by Diego Oliva Salvador Hinojosa Essam H. HousseinThis book is a collection of the most recent approaches that combine metaheuristics and machine learning. Some of the methods considered in this book are evolutionary, swarm, machine learning, and deep learning. The chapters were classified based on the content; then, the sections are thematic. Different applications and implementations are included; in this sense, the book provides theory and practical content with novel machine learning and metaheuristic algorithms.The chapters were compiled using a scientific perspective. Accordingly, the book is primarily intended for undergraduate and postgraduate students of Science, Engineering, and Computational Mathematics and is useful in courses on Artificial Intelligence, Advanced Machine Learning, among others. Likewise, the book is useful for research from the evolutionary computation, artificial intelligence, and image processing communities.
Metaheuristics: Outlines, MATLAB Codes and Examples
by Ali Kaveh Taha BakhshpooriThe book presents eight well-known and often used algorithms besides nine newly developed algorithms by the first author and his students in a practical implementation framework. Matlab codes and some benchmark structural optimization problems are provided. The aim is to provide an efficient context for experienced researchers or readers not familiar with theory, applications and computational developments of the considered metaheuristics. The information will also be of interest to readers interested in application of metaheuristics for hard optimization, comparing conceptually different metaheuristics and designing new metaheuristics.
Metakaolin and Fly Ash as Mineral Admixtures for Concrete
by Leonid Dvorkin Vadim Zhitkovsky Yuri Ribakov Nataliya LushnikovaThe book deals with modern theoretical concepts related to the impact of fly ash and metakaolin admixtures on structure formation processes of concrete. Results of the effect of fly ash, metakaolin and their composition on properties of self-compacting and self-leveling concrete are presented. Based on mathematical models, obtained using mathematical experiments planning methodology, the impact of the main factors and their combination on workability, strength and other properties that determine efficiency and durability of concrete are analyzed. Using calculated dependencies, a methodology for designing optimal compositions of concrete containing active mineral admixtures and superplasticizers is proposed. Features of industrial production of concrete for the proposed compositions are discussed. The book is intended for specialists working in the production of concrete and reinforced concrete products and elements. It can also be used by construction engineers to design compositions of cost-effective self-compacting and self-leveling concrete as well as to determine the rational direction of using technogenic raw materials like ash and metakaolin.
Metakaolin-Based Geopolymers: Design, Mechanisms and Performance
by Dongming Yan Shikun Chen Yi LiuThis book offers a comprehensive overview of the design, mechanisms, and performance of metakaolin-based geopolymers (MKG), with a focus on uncovering the underlying mechanisms that differentiate MKG from ordinary Portland cement (OPC). Covering a wide range of topics surrounding MKG, from the early stages of geopolymerization to the final mechanical performance of MKG concrete, this book provides fundamental insights into the performance of MKG-based materials and their relationship with the composition and microstructure of MKG. The findings presented in this book may serve as a guide for the design and application of MKG in civil engineering constructions. Targeted at scientists and engineers in materials science and civil engineering, this book is intended for those interested in adopting MKG as a sustainable technology for a greener future.
Metakaolin Effect on Geopolymers’ Properties (SpringerBriefs in Applied Sciences and Technology)
by Alaa M. RashadThis book delves into the world of metakaolin (MK) and its impact on the properties of geopolymers. Beginning with an introduction to the abundance and versatility of kaolin, the author explores how calcination transforms it into the highly reactive material known as MK. The book investigates the incorporation of MK into different types of geopolymers and examines how factors such as precursor type and fineness, MK fineness, activator type and concentration, curing conditions, and testing age influence the resulting properties. Through a meticulous evaluation of prior studies, the text presents valuable insights into workability, setting time, density, compressive strength (with specific focus on slag, fly ash, and other precursors), flexural strength, splitting tensile strength, elastic modulus, porosity, water absorption, shrinkage, carbonation resistance, corrosion resistance, and other durability aspects. Drawing upon a wealth of knowledge, this work serves as a comprehensive reference for researchers and offers a roadmap for future investigations.
Metal Additive Manufacturing: Principles, Techniques and Applications
by R. Rajasekar Amir Mostafaei C. Mogana Priya P. Sathish KumarThis informative and practical guide to metal additive manufacturing explores techniques, applications, and future advancements. Metal additive manufacturing stands as a revolutionary technology and a rapid prototype for engineering applications. In the realm of advanced manufacturing, it has long been a driving force in the development of AM metal technology. Moreover, it is now paving the way for high-value manufacturing components blended with sophisticated materials. The book examines this rapidly evolving field and elucidates the foundations of metal additive manufacturing, including its various technologies, material design principles, and extrusion processes. Real-world applications are showcased, with examples from the aerospace, automotive, and healthcare industries, demonstrating the practical impact of metal AM. Chapters thoroughly discuss the evolution of manufacturing techniques, classifications of AM technologies, and the critical role of characterization in ensuring quality. The book emphasizes the importance of metal AM processes and their transformative potential for modern manufacturing. It concludes with coverage of future trends and advancements in additive manufacturing. Audience The book equips manufacturing and production engineers, researchers, and professionals with metal AM knowledge for the production of high-value components, driving innovation and efficiency in manufacturing.
Metal-Air and Metal-Sulfur Batteries: Fundamentals and Applications (Electrochemical Energy Storage and Conversion)
by Vladimir Neburchilov and Jiujun ZhangMetal–air and metal–sulfur batteries (MABs/MSBs) represent one of the most efficient-energy storage technologies, with high round trip efficiency, a long life cycle, fast response at peak demand/supply of electricity, and decreased weight due to the use of atmospheric oxygen as one of the main reactants. This book presents an overview of the main MABs/MSBs from fundamentals to applications. Recent technological trends in their development are reviewed. It also offers a detailed analysis of these batteries at the material, component, and system levels, allowing the reader to evaluate the different approaches of their integration. The book provides a systematic overview of the components, design, and integration, and discusses current technologies, achievements, and challenges, as well as future directions. Each chapter focuses on a particular battery type including zinc–air batteries, lithium–air batteries, aluminum–air batteries, magnesium–air batteries, lithium–sulfur batteries, and vanadium–air redox flow batteries, and metal–sulfur batteries. Features the most recent advances made in metal–air/metal–sulfur batteries. Describes cutting-edge materials and technology for metal–air/metal–sulfur batteries. Includes both fundamentals and applications, which can be used to guide and promote materials as well as technology development for metal–air/metal–sulfur batteries. Provides a systematic overview of the components, design, and integration, and discusses current technologies, achievements, and challenges, as well as future directions. Covers a variety of battery types in depth, such as zinc–air batteries, lithium–air batteries, aluminum–air batteries, magnesium–air batteries, lithium–sulfur batteries, vanadium–air redox flow batteries, and metal–sulfur batteries.
Metal-Air Batteries: Principles, Progress, and Perspectives
by Ram K. GuptaMetal-Air Batteries: Principles, Progress, and Perspectives covers the entire spectrum of metal-air batteries, their working principles, recent advancement, and future perspectives. Leading international researchers address materials design, electrochemistry, and architectural aspects. The fundamentals of metal-air materials for cathode and anode, their synthetic approaches, chemistries to modify their properties to provide high energy and power densities, along with long life and stable electrochemical characteristics are detailed. Key Features: Covers materials, chemistry, and technologies for metal-air batteries. Reviews state-of-the-art progress and challenges in metal-air batteries Provides fundamentals of the electrochemical behavior of various metal-air batteries. Offers insight into tuning the properties of materials to make them suitable for metal-air batteries. Provides new direction and a better understanding to scientists, researchers, and students working in diverse fields. This is a unique offering and a valuable resource for a wide range of readers including those in academia and industries worldwide.
Metal-Air Batteries: Fundamentals and Applications
by Xin-Bo ZhangA comprehensive overview of the research developments in the burgeoning field of metal-air batteries An innovation in battery science and technology is necessary to build better power sources for our modern lifestyle needs. One of the main fields being explored for the possible breakthrough is the development of metal-air batteries. Metal-Air Batteries: Fundamentals and Applications offers a systematic summary of the fundamentals of the technology and explores the most recent advances in the applications of metal-air batteries. Comprehensive in scope, the text explains the basics in electrochemical batteries and introduces various species of metal-air batteries. The author-a noted expert in the field-explores the development of metal-air batteries in the order of Li-air battery, sodium-air battery, zinc-air battery and Mg-O2 battery, with the focus on the Li-air battery. The text also addresses topics such as metallic anode, discharge products, parasitic reactions, electrocatalysts, mediator, and X-ray diffraction study in Li-air battery. Metal-Air Batteries provides a summary of future perspectives in the field of the metal-air batteries. This important resource: -Covers various species of metal-air batteries and their components as well as system designation -Contains groundbreaking content that reviews recent advances in the field of metal-air batteries -Focuses on the battery systems which have the greatest potential for renewable energy storage Written for electrochemists, physical chemists, materials scientists, professionals in the electrotechnical industry, engineers in power technology, Metal-Air Batteries offers a review of the fundamentals and the most recent developments in the area of metal-air batteries.
Metal and Alloy Bonding - An Experimental Analysis
by M. Prema Rani R. SaravananCharge density analysis of materials provides a firm basis for the evaluation of the properties of materials. The design and engineering of a new combination of metals requires a firm knowledge of intermolecular features. Recent advances in technology and high-speed computation have made the crystal X-ray diffraction technique a unique tool for the determination of charge density distribution in molecular crystal. Methods have been developed to make experimental probes capable of unraveling the features of charge densities in the intra- and inter-molecular regions of crystal structures. In Metal and Alloy Bonding - An Experimental Analysis, the structural details of materials are elucidated with the X-ray diffraction technique. Analyses of the charge density and the local and average structure are given to reveal the structural properties of technologically important materials. Readers will gain a new understanding of the local and average structure of existing materials. The electron density, bonding, and charge transfer studies in Metal and Alloy Bonding - An Experimental Analysis contain useful information for researchers in the fields of physics, chemistry, materials science, and metallurgy. The properties described in these studies can contribute to the successful engineering of these technologically important materials.