Browse Results

Showing 44,226 through 44,250 of 72,944 results

Modeling, Analysis and Optimization of Network-on-Chip Communication Architectures

by Umit Y. Ogras Radu Marculescu

Traditionally, design space exploration for Systems-on-Chip (SoCs) has focused on the computational aspects of the problem at hand. However, as the number of components on a single chip and their performance continue to increase, the communication architecture plays a major role in the area, performance and energy consumption of the overall system. As a result, a shift from computation-based to communication-based design becomes mandatory. Towards this end, network-on-chip (NoC) communication architectures have emerged recently as a promising alternative to classical bus and point-to-point communication architectures. In this dissertation, we study outstanding research problems related to modeling, analysis and optimization of NoC communication architectures. More precisely, we present novel design methodologies, software tools and FPGA prototypes to aid the design of application-specific NoCs.

Modeling, Analysis and Optimization of Process and Energy Systems

by F. Carl Knopf

Energy costs impact the profitability of virtually all industrial processes. Stressing how plants use power, and how that power is actually generated, this book provides a clear and simple way to understand the energy usage in various processes, as well as methods for optimizing these processes using practical hands-on simulations and a unique approach that details solved problems utilizing actual plant data. Invaluable information offers a complete energy-saving approach essential for both the chemical and mechanical engineering curricula, as well as for practicing engineers.

Modeling, Analysis, Control and Removal of Oil and Hydrocarbon Spills (Earth and Environmental Sciences Library)

by Tatiana Chaplina

A large number of scientific works are devoted to the study and modeling of accidental oil spills. However, there is no single approach to the description of processes and a generally accepted system of models. An additional fundamental difficulty is the impossibility of conducting full-fledged full-scale experimental studies, which makes it difficult to verify the adequacy and accuracy of oil spill models. Our book is devoted to the problems of experimental investigation and theoretical description of spills, as well as the practical removal of various petroleum products from the water surface and ice. It provides an overview of the most well-known theoretical models of the process of spreading oil stains on the water surface. Also, in the relevant sections, an original spreading model based on an energy approach is proposed and analyzed. The results of new experimental studies of the dynamics of the process for various hydrocarbons on water, including variations in its temperatureand salinity, are presented. In the following chapters, a theoretical description of oil spreading on the upper and lower surfaces of floating ice is proposed, modeling phenomena in the Arctic and subarctic zones of the world ocean. New experimental data on the spreading of petroleum products on the ice surface are presented. The final part provides a brief overview of the existing most used and promising methods for removing of hydrocarbons from the water surface. New original constructive solutions to this problem are proposed, the technical characteristics of which have received theoretical justification and experimental confirmation.

Modeling and Analysis of Dynamic Systems

by Ramin S. Esfandiari Bei Lu

Modeling and Analysis of Dynamic Systems, Third Edition introduces MATLAB®, Simulink®, and Simscape™ and then utilizes them to perform symbolic, graphical, numerical, and simulation tasks. Written for senior level courses/modules, the textbook meticulously covers techniques for modeling a variety of engineering systems, methods of response analysis, and introductions to mechanical vibration, and to basic control systems. These features combine to provide students with a thorough knowledge of the mathematical modeling and analysis of dynamic systems. The Third Edition now includes Case Studies, expanded coverage of system identification, and updates to the computational tools included.

Modeling and Analysis of Local Area Networks

by Paul J. Fortier

Modeling and Analysis of Local Area Networks fills a void in the array of books on Local Area Networks (LANs) in that it reviews the state of LAN technology from a hardware and software perspective, develops a set of metrics that can be used to evaluate LANs for end applications, and investigates methodologies for evaluating LANs from these perspectives. The book discusses LAN evaluation techniques utilizing analysis, operational analysis, hardware testbeds, and simulations. Simulations will be stressed in greater detail and a tool available for evaluating LANs performance (called MALAN) is presented and the details of its structure developed.

Modeling and Analysis with Induction Generators (Power Electronics and Applications Series)

by M. Godoy Simões Felix A. Farret

Now in its Third Edition, Alternative Energy Systems: Design and Analysis with Induction Generators has been renamed Modeling and Analysis with Induction Generators to convey the book's primary objective-to present the fundamentals of and latest advances in the modeling and analysis of induction generators. New to the Third EditionRevised equations

Modeling and Analytical Methods in Tribology

by Ilya I. Kudish Michael Judah Covitch

Improving our understanding of friction, lubrication, and fatigue, Modeling and Analytical Methods in Tribology presents a fresh approach to tribology that links advances in applied mathematics with fundamental problems in tribology related to contact elasticity, fracture mechanics, and fluid film lubrication. The authors incorporate the classical

Modeling and Application of Electromagnetic and Thermal Field in Electrical Engineering

by Zhiguang Cheng Norio Takahashi Behzad Forghani

Co-authored by an international research group with a long-standing cooperation, this book focuses on engineering-oriented electromagnetic and thermal field modeling and application. It presents important contributions, including advanced and efficient finite element analysis used in the solution of electromagnetic and thermal field problems for large and multi-scale engineering applications involving application script development; magnetic measurement of both magnetic materials and components under various, even extreme conditions, based on well-established (standard and non-standard) experimental systems; and multi-level validation based on both industrial test systems and extended TEAM P21 benchmarking platform. Although these are challenging topics, they are useful for readers from both academia and industry.

Modeling and Applications in Operations Research (ISSN)

by Jyotiranjan Nayak Shreekant Varshney Chandra Shekhar

The text envisages novel optimization methods that significantly impact real-life problems, starting from inventory control to economic decision-making. It discusses topics such as inventory control, queueing models, timetable scheduling, fuzzy optimization, and the Knapsack problem. The book’s content encompass the following key aspects: Presents a new model based on an unreliable server, wherein the convergence analysis is done using nature-inspired algorithms Discusses the optimization techniques used in transportation problems, timetable problems, and optimal/dynamic pricing in inventory control Highlights single and multi-objective optimization problems using pentagonal fuzzy numbers Illustrates profit maximization inventory model for non-instantaneous deteriorating items with imprecise costs Showcases nature-inspired algorithms such as particle swarm optimization, genetic algorithm, bat algorithm, and cuckoo search algorithm The text covers multi-disciplinary real-time problems such as fuzzy optimization of transportation problems, inventory control with dynamic pricing, timetable problem with ant colony optimization, knapsack problem, queueing modeling using the nature-inspired algorithm, and multi-objective fuzzy linear programming. It showcases a comparative analysis for studying various combinations of system design parameters and default cost elements. It will serve as an ideal reference text for graduate students and academic researchers in the fields of industrial engineering, manufacturing engineering, production engineering, mechanical engineering, and mathematics.

Modeling and Computation in Engineering II

by Liquan Xie

Modeling and Computation in Engineering II (CMCE 2013, Hong Kong, 22-23 June 2013) includes 50 contributions on modeling and simulation technology, which were presented at the 2nd SREE Conference on Modeling and Computation in Engineering (CMCE 2013) and the 3rd SREE Workshop on Applied Mechanics and Civil Engineering (AMCE 2013), both held in Hong

Modeling and Computation in Engineering III: Porceedings of the 3rd International Conference on Modeling and Computation in Engineering (CMCE 2014), 28-29 June, 2014

by Lei Zhang Liquan Xie

The demands of modeling and computation in engineering are rapidly growing as a multidisciplinary area with connections to engineering, mathematics and computer science. Modeling and Computation in Engineering III contains 45 technical papers from the 3rd International Conference on Modeling and Computation in Engineering (CMCE 2014, 28-29 June 201

Modeling and Control for a Blended Wing Body Aircraft

by Martin Kozek Alexander Schirrer

This book demonstrates the potential of the blended wing body (BWB) concept for significant improvement in both fuel efficiency and noise reduction and addresses the considerable challenges raised for control engineers because of characteristics like open-loop instability, large flexible structure, and slow control surfaces. This text describes state-of-the-art and novel modeling and control design approaches for the BWB aircraft under consideration. The expert contributors demonstrate how exceptional robust control performance can be achieved despite such stringent design constraints as guaranteed handling qualities, reduced vibration, and the minimization of the aircraft's structural loads during maneuvers and caused by turbulence. As a result, this innovative approach allows the building of even lighter aircraft structures, and thus results in considerable efficiency improvements per passenger kilometer. The treatment of this large, complex, parameter-dependent industrial control problem highlights relevant design issues and provides a relevant case study for modeling and control engineers in many adjacent disciplines and applications. Modeling and Control for a Blended Wing Body Aircraft presents research results in numeric modeling and control design for a large, flexible, civil BWB aircraft in the pre-design stage as developed within the EU FP7 research project ACFA 2020. It is a useful resource for aerospace and control engineers as it shows the complete BWB aircraft modeling and control design process, carried out with the most recent tools and techniques available. presents research results in numeric modeling and control design for a large, flexible, civil BWB aircraft in the pre-design stage as developed within the EU FP7 research project ACFA 2020. It is a useful resource for aerospace and control engineers as it shows the complete BWB aircraft modeling and control design process, carried out with the most recent tools and techniques available. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.

Modeling and Control for Micro/Nano Devices and Systems (Automation and Control Engineering #54)

by Ning Xi Mingjun Zhang Author

Micro/nano-scale engineering—especially the design and implementation of ultra-fast and ultra-scale energy devices, sensors, and cellular and molecular systems—remains a daunting challenge. Modeling and control has played an essential role in many technological breakthroughs throughout the course of history. Therefore, the need for a practical guide to modeling and control for micro/nano-scale devices and systems has emerged. The first edited volume to address this rapidly growing field, Modeling and Control for Micro/Nano Devices and Systems gives control engineers, lab managers, high-tech researchers, and graduate students easy access to the expert contributors’ cutting-edge knowledge of micro/nanotechnology, energy, and bio-systems. The editors offer an integrated view from theory to practice, covering diverse topics ranging from micro/nano-scale sensors to energy devices and control of biology systems in cellular and molecular levels. The book also features numerous case studies for modeling of micro/nano devices and systems, and explains how the models can be used for control and optimization purposes. Readers benefit from learning the latest modeling techniques for micro/nano-scale devices and systems, and then applying those techniques to their own research and development efforts.

Modeling and Control in Air-conditioning Systems

by Ye Yao Yuebin Yu

This book investigates the latest modeling and control technologies in the context of air-conditioning systems. Firstly, it introduces the state-space method for developing dynamic models of all components in a central air-conditioning system. The models are primarily nonlinear and based on the fundamental principle of energy and mass conservation, and are transformed into state-space form through linearization. The book goes on to describe and discuss the state-space models with the help of graph theory and the structure-matrix theory. Subsequently, virtual sensor calibration and virtual sensing methods (which are very useful for real system control) are illustrated together with a case study. Model-based predictive control and state-space feedback control are applied to air-conditioning systems to yield better local control, while the air-side synergic control scheme and a global optimization strategy based on the decomposition-coordination method are developed so as to achieve energy conservation in the central air-conditioning system. Lastly, control strategies for VAV systems including total air volume control and trim & response static pressure control are investigated in practice.

Modeling and Control in Vibrational and Structural Dynamics: A Differential Geometric Approach (Chapman & Hall/CRC Applied Mathematics & Nonlinear Science)

by Peng-Fei Yao

Modeling and Control in Vibrational and Structural Dynamics: A Differential Geometric Approach describes the control behavior of mechanical objects, such as wave equations, plates, and shells. It shows how the differential geometric approach is used when the coefficients of partial differential equations (PDEs) are variable in space (waves/plates),

Modeling and Control of a Tracked Mobile Robot for Pipeline Inspection (Mechanisms and Machine Science #82)

by Michał Ciszewski Mariusz Giergiel Tomasz Buratowski Piotr Małka

This book describes the design, mathematical modeling, control system development and experimental validation of a versatile mobile pipe inspection robot. It also discusses a versatile robotic system for pipeline inspection, together with an original, adaptable tracked mobile robot featuring a patented motion unit. Pipeline inspection is a common field of application for mobile robots because the monitoring of inaccessible, long and narrow pipelines is a very difficult task for humans. The main design objective is to minimize the number of robots needed to inspect different types of horizontal and vertical pipelines, with both smooth and rough surfaces. The book includes extensive information on the various design phases, mathematical modeling, simulations and control system development. In closing, the prototype construction process and testing procedures are presented and supplemented with laboratory and field experiments.

Modeling and Control of AC Machine using MATLAB®/SIMULINK

by Mourad Boufadene

This book introduces electrical machine modeling and control for electrical engineering and science to graduate, undergraduate students as well as researchers, who are working on modeling and control of electrical machines. It targets electrical engineering students who have no time to derive mathematical equations for electrical machines in particular induction machine (IM) and doubly fed induction machines (DFIM). The main focus is on the application of field oriented control technique to induction motor (IM) and doubly fed induction motor (DFIM) in details, and since the induction motors have many drawback using this technique, therefore the application of a nonlinear control technique (feedback linearization) is applied to a reduced order model of DFIM to enhance the performance of doubly fed induction motor. Features Serves as text book for electrical motor modeling, simulation and control; especially modeling of induction motor and doubly fed induction motor using different frame of references. Vector control (field oriented control) is given in more detailed, and is applied to induction motor. A nonlinear controller is applied to a reduced model of an doubly induction motor associated with a linear observer to estimate the unmeasured load torque, which is used to enhance the performance of the vector control to doubly fed induction motor. Access to the full MATLAB/SIMULINK blocks for simulation and control.

Modeling and Control of Antennas and Telescopes

by Wodek Gawronski

The book shows, step by step, the design, implementation, and testing of the antenna/telescope control system, from the design stage (analytical model) to fine tuning of the RF beam pointing (monopulse and conscan). The purpose of this book is to present the implementation of the new theoretical developments in structural dynamics and control theory in the antenna and telescope industry. Also to present the significant improvement in pointing accuracy of the antenna and telescope when the presented techniques are implemented. This book fills the need in the antenna/telescope control techniques. For long time, since 1990 when the last book was published, there was no publication on the antenna/telescope/radar modeling and control.

Modeling and Control of Batch Processes: Theory and Applications (Advances in Industrial Control)

by Prashant Mhaskar Abhinav Garg Brandon Corbett

Modeling and Control of Batch Processes presents state-of-the-art techniques ranging from mechanistic to data-driven models. These methods are specifically tailored to handle issues pertinent to batch processes, such as nonlinear dynamics and lack of online quality measurements. In particular, the book proposes:a novel batch control design with well characterized feasibility properties;a modeling approach that unites multi-model and partial least squares techniques;a generalization of the subspace identification approach for batch processes; and applications to several detailed case studies, ranging from a complex simulation test bed to industrial data. The book’s proposed methodology employs statistical tools, such as partial least squares and subspace identification, and couples them with notions from state-space-based models to provide solutions to the quality control problem for batch processes. Practical implementation issues are discussed to help readers understand the application of the methods in greater depth. The book includes numerous comments and remarks providing insight and fundamental understanding into the modeling and control of batch processes. Modeling and Control of Batch Processes includes many detailed examples of industrial relevance that can be tailored by process control engineers or researchers to a specific application. The book is also of interest to graduate students studying control systems, as it contains new research topics and references to significant recent work. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.

Modeling and Control of Complex Systems (ISSN #26)

by Andreas Pitsillides Petros A. Ioannou

There is an emerging interest in the area of modeling and control of complex systems for applications in many engineering and non-engineering fields such as biology, transportation, robotics, information technology, and communications. This text provides a pioneering, single-source compilation of material from internationally renowned experts with different approaches to the applications of modeling and control of complex systems. Sections cover complex systems, biological systems, communication networks, sensor networks and automation, autonomous vehicles and robotics, transportation systems and structures, and others. The authors highlight the most important areas of research, the latest advances, and possible future directions.

Modeling and Control of Engines and Drivelines

by Lars Eriksson Lars Nielsen

A reference guide to modeling, analysis, and control of engines and drivelines A reference manual for engineers and an introduction for students in the areas of modeling, analysis, and control of engines and drivelinesCovers the basic dynamics of internal combustion engines and drivelinesDiscusses the goals that engine control design system aims for, and how these targets can be achievedProvides a set of standard models and includes examples and case studiesIncludes an overview of hybrid vehicles and powertrainsAccompanied by a website hosting example modelsModeling and Control of Engines and Drivelines provides an introduction to the subject of modeling, analysis, and control of engines and drivelines. The aim of the book is to provide a set of standard models and serve as a reference material for engineers in the field.Modeling and Control of Engines and Drivelines highlights the interplay between the engine and driveline systems, and the integration between systems that is needed for successfully engineering a complete vehicle powertrain. In addition it also emphasises that systems should be designed such that they can be maintained and diagnosed over the vehicle life time, which is also an important engineering task in the development of control systems.

Modeling and Control of Magnetic Fluid Deformable Mirrors for Adaptive Optics Systems

by Zhizheng Wu Foued Ben Amara Azhar Iqbal

Modeling and Control of Magnetic Fluid Deformable Mirrors for Adaptive Optics Systems presents a novel design of wavefront correctors based on magnetic fluid deformable mirrors (MFDM) as well as corresponding control algorithms. The presented wavefront correctors are characterized by their linear, dynamic response. Various mirror surface shape control algorithms are presented along with experimental evaluations of the performance of the resulting adaptive optics systems. Adaptive optics (AO) systems are used in various fields of application to enhance the performance of optical systems, such as imaging, laser, free space optical communication systems, etc. This book is intended for undergraduate and graduate students, professors, engineers, scientists and researchers working on the design of adaptive optics systems and their various emerging fields of application. Zhizheng Wu is an associate professor at Shanghai University, China. Azhar Iqbal is a research associate at the University of Toronto, Canada. Foued Ben Amara is an assistant professor at the University of Toronto, Canada.

Modeling and Control of Modern Electrical Energy Systems (IEEE Press Series on Power and Energy Systems)

by Masoud Karimi-Ghartemani

Modeling and Control of Modern Electrical Energy Systems A step-by-step approach to the modeling, analysis, and control of modern electronically controlled energy systems In Modeling and Control of Modern Electrical Energy Systems, distinguished researcher Dr. Masoud Karimi-Ghartemani delivers a comprehensive discussion of distributed and renewable energy resource integration from a control system perspective. The book explores various practical aspects of these systems, including the power extraction control of renewable resources and size selection of short-term storage components. The interactions of distributed energy resources (DERs) with the rest of the electric power system are presented, as is a discussion of the ability of the DER to ride through grid voltage faults and frequency swings. Readers will also discover how to derive mathematical models of different types of energy systems and build simulation models for those systems. Modeling and Control of Electrical Energy Systems provides end-of chapter examples and problems, as well as: A thorough introduction to power electronic conversion, including power electronics and standard power electronic converters An in-depth treatment of feedback control systems, including frequency-domain (transfer function) approaches and time-domain (state space) approaches Comprehensive discussions of direct current DERs and single-phase alternating current DERs Fulsome explorations of three-phase distributed energy resources Perfect for researchers, practitioners, and professors with an interest in electronically interfaced modern energy systems, Modeling and Control of Modern Electrical Energy Systems will also earn a place in the libraries of senior undergraduate and graduate students of electrical engineering.

Modeling and Control of Power Electronic Converters for Microgrid Applications

by Yang Han

This book covers the fundamentals of power electronic converter modeling and control, digital simulation, and experimental studies in the area of renewable energy systems and AC/DC microgrid. Recent advanced control methods for voltage source inverters (VSIs) and the hierarchical controlled islanded microgrid are discussed, including the mathematical modeling, controller synthesis, parameter selection and multi-scale stability analysis, and consensus-based control strategies for the microgrid and microgrid clusters. The book will be an invaluable technical reference for practicing engineers and researchers working in the areas of renewable energy, power electronics, energy internet, and smart grid. It can also be utilized as reference book for undergraduate and postgraduate students in electrical engineering.

Modeling and Control of Precision Actuators

by Tan Kok Kiong Huang Sunan

Modeling and Control of Precision Actuators explores new technologies that can ultimately be applied in a myriad of industries. It covers dynamical analysis of precise actuators and strategies of design for various control applications. The book addresses four main schemes: modeling and control of precise actuators; nonlinear control of precise actuators, including sliding mode control and neural network feedback control; fault detection and fault-tolerant control; and advanced air bearing control. It covers application issues in the modeling and control of precise actuators, providing several interesting case studies for more application-oriented readers. Introduces the driving forces behind precise actuators Describes nonlinear dynamics of precise actuators and their mathematical forms, including hysteresis, creep, friction, and force ripples Presents the control strategies for precise actuators based on Preisach model as well as creep dynamics Develops relay feedback techniques for identifying nonlinearities such as friction and force ripples Discusses a MPC approach based on piecewise affine models which emulate the frictional effects in the precise actuator Covers the concepts of air bearing stages with the corresponding control method Provides a set of schemes suitable for fault detection and accommodation control of mechanical systems Emphasizing design theory and control strategies, the book includes simulation and practical examples for each chapter; covers precise actuators such as piezo motors, coil motors, air bearing motors, and linear motors; discusses integration among different technologies; and includes three case studies in real projects. The book concludes by linking design methods and their applications, emphasizing the key issues involved and how to implement the precision motion control tasks in a practical system. It provides a concise and comprehensive source of the state-of-the-art developments and results for modeling and control of precise actuators.

Refine Search

Showing 44,226 through 44,250 of 72,944 results