Browse Results

Showing 44,251 through 44,275 of 72,943 results

Modeling and Control of Vibration in Mechanical Systems (Automation and Control Engineering #38)

by Chunling Du Lihua Xie

From the ox carts and pottery wheels the spacecrafts and disk drives, efficiency and quality has always been dependent on the engineer’s ability to anticipate and control the effects of vibration. And while progress in negating the noise, wear, and inefficiency caused by vibration has been made, more is needed. Modeling and Control of Vibration in Mechanical Systems answers the essential needs of practitioners in systems and control with the most comprehensive resource available on the subject. Written as a reference for those working in high precision systems, this uniquely accessible volume: Differentiates between kinds of vibration and their various characteristics and effects Offers a close-up look at mechanical actuation systems that are achieving remarkably high precision positioning performance Includes techniques for rejecting vibrations of different frequency ranges Covers the theoretical developments and principles of control design with detail elaborate enough that readers will be able to apply the techniques with the help of MATLAB® Details a wealth of practical working examples as well as a number of simulation and experimental results with comprehensive evaluations The modern world’s ever-growing spectra of sophisticated engineering systems such as hard disk drives, aeronautic systems, and manufacturing systems have little tolerance for unanticipated vibration of even the slightest magnitude. Accordingly, vibration control continues to draw intensive focus from top control engineers and modelers. This resource demonstrates the remarkable results of that focus to date, and most importantly gives today’s researchers the technology that they need to build upon into the future. Chunling Du is currently researching modeling and advanced servo control of hard disk drives at the Data Storage Institute in Singapore. Lihua Xie is the Director of the Centre for Intelligent Machines and a professor at Nanyang Technological University in Singapore.

Modeling and Control Strategies for a Fuel Cell System (Springer Theses)

by Yashan Xing

This book reports on a comprehensive study on the modeling, online and offline parameter estimation and control strategies for fuel cell systems. Upon reviewing the control-oriented modeling of proton-exchange membrane fuel cell systems (PEMFC) and solid oxide fuel cell systems (SOFC), it describes a new a set of methodologies to estimate the parameters of these models, both online and offline. In turn, it reports on the design of different control systems for PEMFC and SOFC. Experimental findings are shown to demonstrate the efficiency of the newly developed methods in practical applications, and their improved performance over classical methods.

Modeling and Convexity

by Eduardo Souza de Cursi Rubens Sampaio

This reference book gives the reader a complete but comprehensive presentation of the foundations of convex analysis and presents applications to significant situations in engineering. The presentation of the theory is self-contained and the proof of all the essential results is given. The examples consider meaningful situations such as the modeling of curvilinear structures, the motion of a mass of people or the solidification of a material. Non convex situations are considered by means of relaxation methods and the connections between probability and convexity are explored and exploited in order to generate numerical algorithms.

Modeling and Design of Electromagnetic Compatibility for High-Speed Printed Circuit Boards and Packaging

by Xing-Chang Wei

Modeling and Design of Electromagnetic Compatibility for High-Speed Printed Circuit Boards and Packaging presents the electromagnetic modelling and design of three major electromagnetic compatibility (EMC) issues related to the high-speed printed circuit board (PCB) and electronic packages: signal integrity (SI), power integrity (PI), and electromagnetic interference (EMI). The emphasis is put on two essential passive components of PCBs and packages: the power distribution network and the signal distribution network. This book includes two parts. Part one talks about the field-circuit hybrid methods used for the EMC modeling, including the modal method, the integral equation method, the cylindrical wave expansion method and the de-embedding method. Part two illustrates EMC design methods and explores the applications of novel metamaterials and two-dimensional materials on traditional EMC problems. This book is designed to enhance worthwhile electromagnetic theory and mathematical methods for practical engineers and to train students with advanced EMC applications.

Modeling and Design of Flexible Pavements and Materials

by Dallas N. Little David H. Allen Amit Bhasin

This textbook lays out the state of the art for modeling of asphalt concrete as the major structural component of flexible pavements. The text adopts a pedagogy in which a scientific approach, based on materials science and continuum mechanics, predicts the performance of any configuration of flexible roadways subjected to cyclic loadings. The authors incorporate state-of the-art computational mechanics to predict the evolution of material properties, stresses and strains, and roadway deterioration. Designed specifically for both students and practitioners, the book presents fundamentally complex concepts in a clear and concise way that aids the roadway design community to assimilate the tools for designing sustainable roadways using both traditional and innovative technologies.

Modeling and Design of Secure Internet of Things

by Alexander Kott Sachin Shetty Charles A. Kamhoua Laurent L. Njilla

An essential guide to the modeling and design techniques for securing systems that utilize the Internet of Things Modeling and Design of Secure Internet of Things offers a guide to the underlying foundations of modeling secure Internet of Things' (IoT) techniques. The contributors—noted experts on the topic—also include information on practical design issues that are relevant for application in the commercial and military domains. They also present several attack surfaces in IoT and secure solutions that need to be developed to reach their full potential. The book offers material on security analysis to help with in understanding and quantifying the impact of the new attack surfaces introduced by IoT deployments. The authors explore a wide range of themes including: modeling techniques to secure IoT, game theoretic models, cyber deception models, moving target defense models, adversarial machine learning models in military and commercial domains, and empirical validation of IoT platforms. This important book: Presents information on game-theory analysis of cyber deception Includes cutting-edge research finding such as IoT in the battlefield, advanced persistent threats, and intelligent and rapid honeynet generation Contains contributions from an international panel of experts Addresses design issues in developing secure IoT including secure SDN-based network orchestration, networked device identity management, multi-domain battlefield settings, and smart cities Written for researchers and experts in computer science and engineering, Modeling and Design of Secure Internet of Things contains expert contributions to provide the most recent modeling and design techniques for securing systems that utilize Internet of Things.

Modeling and Dimensioning of Structures: An Introduction

by Daniel Gay Jacques Gambelin

This book provides the main topics currently used for the calculus of structures. The reference establishes a link between the traditional approach on the strength of materials and the present finite element method, details the main aspects of practical modeling, and explores numerous case studies.

Modeling and Dynamics Control for Distributed Drive Electric Vehicles

by Xudong Zhang

Due to the improvements on electric motors and motor control technology, alternative vehicle power system layouts have been considered. One of the latest is known as distributed drive electric vehicles (DDEVs), which consist of four motors that are integrated into each drive and can be independently controllable. Such an innovative design provides packaging advantages, including short transmission chain, fast and accurate torque response, and so on. Based on these advantages and features, this book takes stability and energy-saving as cut-in points, and conducts investigations from the aspects of Vehicle State Estimation, Direct Yaw Moment Control (DYC), Control Allocation (CA). Moreover, lots of advanced algorithms, such as general regression neural network, adaptive sliding mode control-based optimization, as well as genetic algorithms, are applied for a better control performance.

Modeling and Estimation of Structural Damage

by Jonathan M. Nichols Kevin D. Murphy

Modelling and Estimation of Damage in Structures is a comprehensiveguide to solving the type of modelling and estimation problems associated with the physics of structural damage. Provides a model-based approach to damage identification Presents an in-depth treatment of probability theory and random processes Covers both theory and algorithms for implementing maximum likelihood and Bayesian estimation approaches Includes experimental examples of all detection and identification approaches Provides a clear means by which acquired data can be used to make decisions regarding maintenance and usage of a structure

Modeling and Evaluating Denial of Service Attacks for Wireless and Mobile Applications

by Zhou Lu Wenye Wang Cliff Wang

This SpringerBrief covers modeling and analysis of Denial-of-Service attacks in emerging wireless and mobile applications. It uses an application-specific methodology to model and evaluate denial-of-service attacks. Three emerging applications are explored: multi-modal CSMA/CA networks, time-critical networks for the smart grid, and smart phone applications. The authors define a new performance metric to quantify the benefits of backoff misbehavior and show the impacts of a wide range of backoff mishandling nodes on the network performance, and propose a scheme to minimize the delay of time-critical message delivery under jamming attacks in smart grid applications. An investigation on the resilience of mobile services against malware attacks is included to advance understanding of network vulnerabilities associated with emerging wireless networks and offers instrumental guidance into the security design for future wireless and mobile applications. This book is appropriate for students, faculty, engineers, and experts in the technical area of wireless communication, mobile networks and cyber security.

Modeling and Forecasting of Staffing in Civil Aviation (Springer Aerospace Technology)

by Anzhela Borzova Yuri Chinyuchin Vadim Vorobyov Dmitry Zatuchny

This book highlights issues related to the organization and improvement of the efficiency of training system in technical operation of radio-electronic equipment currently used in civil aviation. The increasing intensity of air traffic around the world leads to a quantitative increase in old problems and the emergence of qualitatively new ones that can only be solved by trained people, whose training process should be carried out on a systematic basis. Modern approaches to improving the human resources potential of civil aviation, as a rule, are based only on modernizing the management mechanisms of the training system. One of the main advantages of this book is the unique integrated approach to building a system for training aviation personnel in the field of technical operation of radio-electronic equipment and air traffic control, which consists in taking into account various factors that affect the training of specialists, promising areas of development of civil aviation based on the analysis of various guidance documents and the construction of mathematical models that give a qualitative assessment of existing methods and the proposed new methodology. The book contains a large amount of visual illustrative material showing the existing structure of the system of training in the field of civil aviation.

Modeling and Management of Fuzzy Semantic RDF Data (Studies in Computational Intelligence #1057)

by Zongmin Ma Guanfeng Li Ruizhe Ma

This book systemically presents the latest research findings in fuzzy RDF data modeling and management. Fuzziness widely exist in many data and knowledge intensive applications. With the increasing amount of metadata available, efficient and scalable management of massive semantic data with uncertainty is of crucial importance. This book goes to great depth concerning the fast-growing topic of technologies and approaches of modeling and managing fuzzy metadata with Resource Description Framework (RDF) format. Its major topics include representation of fuzzy RDF data, fuzzy RDF graph matching, query of fuzzy RDF data, and persistence of fuzzy RDF data in diverse databases. The objective of the book is to provide the state-of-the-art information to researchers, practitioners, and postgraduates students who work on the area of big data intelligence and at the same time serve as the uncertain data and knowledge engineering professional as a valuable real-world reference.

Modeling and Managing Interdependent Complex Systems of Systems: Interdependent Complex System Of Systems (Wiley - IEEE)

by Yacov Y. Haimes

A comprehensive guide to the theory, methodology, and development for modeling systems of systems Modeling and Managing Interdependent Complex Systems of Systems examines the complexity of, and the risk to, emergent interconnected and interdependent complex systems of systems in the natural and the constructed environment, and in its critical infrastructures. For systems modelers, this book focuses on what constitutes complexity and how to understand, model and manage it.Previous modeling methods for complex systems of systems were aimed at developing theory and methodologies for uncoupling the interdependencies and interconnections that characterize them. In this book, the author extends the above by utilizing public- and private- sector case studies; identifies, explores, and exploits the core of interdependencies; and seeks to understand their essence via the states of the system, and their dominant contributions to the complexity of systems of systems. The book proposes a reevaluation of fundamental and practical systems engineering and risk analysis concepts on complex systems of systems developed over the past 40 years. This important resource: Updates and streamlines systems engineering theory, methodology, and practice as applied to complex systems of systems Introduces modeling methodology inspired by philosophical and conceptual thinking from the arts and sciences Models the complexity of emergent interdependent and interconnected complex systems of systems by analyzing their shared states, decisions, resources, and decisionmakers Written for systems engineers, industrial engineers, managers, planners, academics and other professionals in engineering systems and the environment,this text is the resource for understanding the fundamental principles of modeling and managing complex systems of systems, and the risk thereto.

Modeling and Optimization for Mobile Social Networks

by Zhou Su Qichao Xu Kuan Zhang Xuemin Sherman Shen

This book investigates the modeling and optimization issues in mobile social networks (MSNs). Firstly, the architecture and applications of MSNs are examined. The existing works on MSNs are reviewed by specifying the critical challenges and research issues. Then, with the introduction of MSN-based social graph and information dissemination mechanisms, the analytical model for epidemic information dissemination with opportunistic Links in MSNs is discussed. In addition, optimal resource allocation is studied based on a heterogeneous architecture, which provides mobile social services with high capacity and low latency. Finally, this book summarize some open problems and future research directions in MSNs. Written for researchers and academics, this book is useful for anyone working on mobile networks, network architecture, or content delivery. It is also valuable for advanced-level students of computer science.

Modeling and Optimization in Green Logistics

by Houda Derbel Bassem Jarboui Patrick Siarry

This book presents recent work that analyzes general issues of green logistics and smart cities. The contributed chapters consider operating models with important ecological, economic, and social objectives.The content will be valuable for researchers and postgraduate students in computer science, information technology, industrial engineering, and applied mathematics.

Modeling and Optimization in Manufacturing: Toward Greener Production by Integrating Computer Simulation

by Catalin I. Pruncu Jun Jiang

Discover the state-of-the-art in multiscale modeling and optimization in manufacturing from two leading voices in the field Modeling and Optimization in Manufacturing delivers a comprehensive approach to various manufacturing processes and shows readers how multiscale modeling and optimization processes help improve upon them. The book elaborates on the foundations and applications of computational modeling and optimization processes, as well as recent developments in the field. It offers discussions of manufacturing processes, including forming, machining, casting, joining, coating, and additive manufacturing, and how computer simulations have influenced their development. Examples for each category of manufacturing are provided in the text, and industrial applications are described for the reader. The distinguished authors also provide an insightful perspective on likely future trends and developments in manufacturing modeling and optimization, including the use of large materials databases and machine learning. Readers will also benefit from the inclusion of: A thorough introduction to the origins of manufacturing, the history of traditional and advanced manufacturing, and recent progress in manufacturing An exploration of advanced manufacturing and the environmental impact and significance of manufacturing Practical discussions of the economic importance of advanced manufacturing An examination of the sustainability of advanced manufacturing, and developing and future trends in manufacturing Perfect for materials scientists, mechanical engineers, and process engineers, Modeling and Optimization in Manufacturing will also earn a place in the libraries of engineering scientists in industries seeking a one-stop reference on multiscale modeling and optimization in manufacturing.

Modeling and Optimization in Space Engineering: State of the Art and New Challenges (Springer Optimization and Its Applications #144)

by Giorgio Fasano János D. Pintér

This book presents advanced case studies that address a range of important issues arising in space engineering. An overview of challenging operational scenarios is presented, with an in-depth exposition of related mathematical modeling, algorithmic and numerical solution aspects. The model development and optimization approaches discussed in the book can be extended also towards other application areas. The topics discussed illustrate current research trends and challenges in space engineering as summarized by the following list: • Next Generation Gravity Missions • Continuous-Thrust Trajectories by Evolutionary Neurocontrol • Nonparametric Importance Sampling for Launcher Stage Fallout • Dynamic System Control Dispatch • Optimal Launch Date of Interplanetary Missions • Optimal Topological Design • Evidence-Based Robust Optimization • Interplanetary Trajectory Design by Machine Learning • Real-Time Optimal Control • Optimal Finite Thrust Orbital Transfers • Planning and Scheduling of Multiple Satellite Missions • Trajectory Performance Analysis • Ascent Trajectory and Guidance Optimization • Small Satellite Attitude Determination and Control • Optimized Packings in Space Engineering • Time-Optimal Transfers of All-Electric GEO Satellites Researchers working on space engineering applications will find this work a valuable, practical source of information. Academics, graduate and post-graduate students working in aerospace, engineering, applied mathematics, operations research, and optimal control will find useful information regarding model development and solution techniques, in conjunction with real-world applications.

Modeling and Optimization in Space Engineering

by Giorgio Fasano János D. Pintér

This volume presents a selection of advanced case studies that address a substantial range of issues and challenges arising in space engineering. The contributing authors are well-recognized researchers and practitioners in space engineering and in applied optimization. The key mathematical modeling and numerical solution aspects of each application case study are presented in sufficient detail. Classic and more recent space engineering problems - including cargo accommodation and object placement, flight control of satellites, integrated design and trajectory optimization, interplanetary transfers with deep space manoeuvres, low energy transfers, magnetic cleanliness modeling, propulsion system design, sensor system placement, systems engineering, space traffic logistics, and trajectory optimization - are discussed. Novel points of view related to computational global optimization and optimal control, and to multidisciplinary design optimization are also given proper emphasis. A particular attention is paid also to scenarios expected in the context of future interplanetary explorations. Modeling and Optimization in Space Engineering will benefit researchers and practitioners working on space engineering applications. Academics, graduate and post-graduate students in the fields of aerospace and other engineering, applied mathematics, operations research and optimal control will also find the book useful, since it discusses a range of advanced model development and solution techniques and tools in the context of real-world applications and new challenges.

Modeling and Optimization of Interdependent Energy Infrastructures

by Wei Wei Jianhui Wang

This book opens up new ways to develop mathematical models and optimization methods for interdependent energy infrastructures, ranging from the electricity network, natural gas network, district heating network, and electrified transportation network. The authors provide methods to help analyze, design, and operate the integrated energy system more efficiently and reliably, and constitute a foundational basis for decision support tools for the next-generation energy network. Chapters present new operation models of the coupled energy infrastructure and the application of new methodologies including convex optimization, robust optimization, and equilibrium constrained optimization. Four appendices provide students and researchers with helpful tutorials on advanced optimization methods: Basics of Linear and Conic Programs; Formulation Tricks in Integer Programming; Basics of Robust Optimization; Equilibrium Problems. This book provides theoretical foundation and technical applications for energy system integration, and the the interdisciplinary research presented will be useful to readers in many fields including electrical engineering, civil engineering, and industrial engineering.

Modeling and Optimization of LCD Optical Performance

by Dmitry A. Yakovlev Hoi-Sing Kwok Vladimir G. Chigrinov

Focusing on polarization matrix optics in many forms, this book includes coverage of a wide range of methods which have been applied to LCD modeling, ranging from the simple Jones matrix method to elaborate and high accuracy algorithms suitable for off-axis optics. Researchers and scientists are constantly striving for improved performance, faster response times, wide viewing angles, improved colour in liquid crystal display development, and with this comes the need to model LCD devices effectively. The authors have significant experience in dealing with the problems related to the practical application of liquid crystals, in particular their optical performance. Key features: Explores analytical solutions and approximations to important cases in the matrix treatment of different LC layer configurations, and the application of these results to improve the computational method Provides the analysis of accuracies of the different approaches discussed in the book Explains the development of the Eigenwave Jones matrix method which offers a path to improved accuracy compared to Jones matrix and extended Jones matrix formalisms, while achieving significant improvement in computational speed and versatility compared to full 4x4 matrix methods Includes a companion website hosting the authors' program library LMOPTICS (FORTRAN 90), a collection of routines for calculating the optical characteristics of stratified media, the use of which allows for the easy implementation of the methods described in this book. The website also contains a set of sample programs (source codes) using LMOPTICS, which exemplify the application of these methods in different situations

Modeling and Optimization of Optical Communication Networks

by Chandra Singh Rathishchandra R. Gatti K.V.S.S.S.S. Sairam Ashish Singh

MODELING and OPTIMIZATION of OPTICAL COMMUNICATION NETWORKS Optical networks are an integral part of many of the technologies that we use every day. It is a constantly changing and evolving area, with new materials, processes, and applications coming online almost daily. This book provides a basis for discussing open principles, methods and research problems in the modeling of optical communication networks. It also provides a systematic overview of the state-of-the-art research efforts and potential research directions dealing with optical communication metworks. It also simultaneously focuses on extending the limits of currently used systems encompassing optical and wireless domains and explores novel research on wireless and optical techniques and systems, describing practical implementation activities, results and issues. A handbook on applications for both academia and industry, this exciting new volume includes detailed discussions on real-world case studies on trends and emerging technologies associated with modeling of optical communication networks. This book also describes several numerical models and algorithms for simulation and optimization of optical communication networks. Modeling and optimization presents several opportunities for automating operations and introducing intelligent decision making in network planning and in dynamic control and management of network resources, including issues like connection establishment, self-configuration, and self-optimization, through prediction and estimation by utilizing present network state and historical data. It focuses on extending the limits of currently used systems encompassing optical and wireless domains, and explores the latest developments in applications like photonics, high speed communication systems and networks, visible light communication, nano-photonics, wireless, and MIMO systems.

Modeling and Prediction of Polymer Nanocomposite Properties (Polymer Nano-, Micro- and Macrocomposites)

by Vikas Mittal

The book series 'Polymer Nano-, Micro- and Macrocomposites' provides complete and comprehensive information on all important aspects of polymer composite research and development, including, but not limited to synthesis, filler modification, modeling, characterization as well as application and commercialization issues. Each book focuses on a particular topic and gives a balanced in-depth overview of the respective subfi eld of polymer composite science and its relation to industrial applications. With the books the readers obtain dedicated resources with information relevant to their research, thereby helping to save time and money. This book lays the theoretical foundations and emphasizes the close connection between theory and experiment to optimize models and real-life procedures for the various stages of polymer composite development. As such, it covers quantum-mechanical approaches to understand the chemical processes on an atomistic level, molecular mechanics simulations to predict the filler surface dynamics, finite element methods to investigate the macro-mechanical behavior, and thermodynamic models to assess the temperature stability. The whole is rounded off by a look at multiscale models that can simulate properties at various length and time scales in one go - and with predictive accuracy.

Modeling and Python Simulation of Magnetics for Power Electronics Applications

by Shivkumar V. Iyer

This book describes the role of magnetism in electrical engineering, starting from the most basic laws of physics, converted into simulation models such that electrical engineering students can learn by example and practice. The author demystifies a topic that many electrical engineers take for granted, providing readers the tools to be able to understand how any magnetic component works. He describes magnetic components like inductors and transformers in simple understandable language. Mathematical equations related to the basic laws of physics are described in detail along with the physical significance of the equations. Every application is supported by a simulation. All simulations are performed using free and open source software based on Python making the material in this book universally accessible.

Modeling and Simulation: Challenges and Best Practices for Industry

by Guillaume Dubois

Modeling, in the past 60 years, has been constantly evolving and has revolutionized the industrial sector. Its continuous development will still have profound impact in the upcoming future. For big or small companies, modeling is a tool which brings technical improvement and profitability. <P><P>What is modeling? What are the benefits and limits? What are the best practices, technical and non-technical, to apply? <P><P>The objective of this book is to bring answers to these questions in a synthetic and transversal manner, so that engineers, managers and directors can see future challenges not as a threat, but as an opportunity. <P><P>Features: <li>Transversal and synthetic view on modeling, written in a clear and pragmatic way <li>Technical best practices to build/ develop a model <li>Non-technical best practices to efficiently deploy modeling in companies <li>All best practices discussed in the book have been truly already implemented in past situations <li>Theory is illustrated in a case study from the beginning to the end of the book

Modeling and Simulation Based Analysis in Reliability Engineering (Advanced Research in Reliability and System Assurance Engineering)

by Mangey Ram

Recent developments in reliability engineering has become the most challenging and demanding area of research. Modeling and Simulation, along with System Reliability Engineering has become a greater issue because of high-tech industrial processes, using more complex systems today. This book gives the latest research advances in the field of modeling and simulation, based on analysis in engineering sciences. Features Focuses on the latest research in modeling and simulation based analysis in reliability engineering. Covers performance evaluation of complex engineering systems Identifies and fills the gaps of knowledge pertaining to engineering applications Provides insights on an international and transnational scale Modeling and Simulation Based Analysis in Reliability Engineering aims at providing a reference for applications of mathematics in engineering, offering a theoretical sound background with adequate case studies, and will be of interest to researchers, practitioners, and academics.

Refine Search

Showing 44,251 through 44,275 of 72,943 results