- Table View
- List View
Modeling and Simulation Based Life-Cycle Engineering
by Ken Chong Harold S. Morgan Sunil Saigal Stefan ThynellAdvances in computational power have facilitated the development of simulations unprecedented in their computational size, scope of technical issues, spatial and temporal resolution, complexity and comprehensiveness. As a result, complex structures from airplanes to bridges can be almost completely based on model-based simulations. This book gives
Modeling and Simulation-Based Systems Engineering Handbook (Engineering Management)
by Daniele Gianni Andrea D’Ambrogio Andreas TolkThe capability modeling and simulation (M&S) supplies for managing systems complexity and investigating systems behaviors has made it a central activity in the development of new and existing systems. However, a handbook that provides established M&S practices has not been available. Until now. Modeling and Simulation-Based Systems Engineering Handbook details the M&S practices for supporting systems engineering in diverse domains. It discusses how you can identify systems engineering needs and adapt these practices to suit specific application domains, thus avoiding redefining practices from scratch.Although M&S practices are used and embedded within individual disciplines, they are often developed in isolation. However, they address recurring problems common to all disciplines. The editors of this book tackled the challenge by recruiting key representatives from several communities, harmonizing the different perspectives derived from individual backgrounds, and lining them up with the book’s vision. The result is a collection of M&S systems engineering examples that offer an initial means for cross-domain capitalization of the knowledge, methodologies, and technologies developed in several communities. These examples provide the pros and cons of the methods and techniques available, lessons learned, and pitfalls to avoid.As our society moves further in the information era, knowledge and M&S capabilities become key enablers for the engineering of complex systems and systems of systems. Therefore, knowledge and M&S methodologies and technologies become valuable output in an engineering activity, and their cross-domain capitalization is key to further advance the future practices in systems engineering. This book collates information across disciplines to provide you with the tools to more efficiently design and manage complex systems that achieve their goals.
Modeling and Simulation for Material Selection and Mechanical Design (Mechanical Engineering)
by George E. Totten Lin Xie Kiyoshi FunataniThis reference describes advanced computer modeling and simulation procedures to predict material properties and component design including mechanical properties, microstructural evolution, and materials behavior and performance. The book illustrates the most effective modeling and simulation technologies relating to surface-engineered compounds, fastener design, quenching and tempering during heat treatment, and residual stresses and distortion during forging, casting, and heat treatment. With contributions from internationally recognized experts in the field, it enables researchers to enhance engineering processes and reduce production costs in materials and component development.
Modeling and Simulation for Microelectronic Packaging Assembly: Manufacturing, Reliability and Testing
by Sheng Liu Yong LiuAlthough there is increasing need for modeling and simulation in the IC package design phase, most assembly processes and various reliability tests are still based on the time consuming "test and try out" method to obtain the best solution. Modeling and simulation can easily ensure virtual Design of Experiments (DoE) to achieve the optimal solution. This has greatly reduced the cost and production time, especially for new product development. Using modeling and simulation will become increasingly necessary for future advances in 3D package development. In this book, Liu and Liu allow people in the area to learn the basic and advanced modeling and simulation skills to help solve problems they encounter. Models and simulates numerous processes in manufacturing, reliability and testing for the first time Provides the skills necessary for virtual prototyping and virtual reliability qualification and testing Demonstrates concurrent engineering and co-design approaches for advanced engineering design of microelectronic products Covers packaging and assembly for typical ICs, optoelectronics, MEMS, 2D/3D SiP, and nano interconnects Appendix and color images available for download from the book's companion website Liu and Liu have optimized the book for practicing engineers, researchers, and post-graduates in microelectronic packaging and interconnection design, assembly manufacturing, electronic reliability/quality, and semiconductor materials. Product managers, application engineers, sales and marketing staff, who need to explain to customers how the assembly manufacturing, reliability and testing will impact their products, will also find this book a critical resource. Appendix and color version of selected figures can be found at www.wiley.com/go/liu/packaging
Modeling and Simulation in Chemical Engineering: Project Reports on Process Simulation (Heat and Mass Transfer)
by Christo BoyadjievThis book presents a theoretical analysis of the modern methods used for modeling various chemical engineering processes. Currently, the two primary problems in the chemical industry are the optimal design of new devices and the optimal control of active processes. Both of these problems are often solved by developing new methods of modeling. These methods for modeling specific processes may be different, but in all cases, they bring the mathematical description closer to the real processes by using appropriate experimental data. In this book, the authors detail a new approach for the modeling of chemical processes in column apparatuses. Further, they describe the types of neural networks that have been shown to be effective in solving important chemical engineering problems. Readers are also presented with mathematical models of integrated bioethanol supply chains (IBSC) that achieve improved economic and environmental sustainability. The integration of energy and mass processes is one of the most powerful tools for creating sustainable and energy efficient production systems. This book defines the main approaches for the thermal integration of periodic processes, direct and indirect, and the recent integration of small-scale solar thermal dryers with phase change materials as energy accumulators. An exciting overview of new approaches for the modeling of chemical engineering processes, this book serves as a guide for the important innovations being made in theoretical chemical engineering.
Modeling and Simulation in Engineering, Economics and Management
by Raúl León María Jesús Muñoz-Torres Jose M. MonevaThis book contains the refereed proceedings of the International Conference on Modeling and Simulation in Engineering, Economics and Management, MS 2016, held in Teruel, Spain, in July 2016. The event was co-organized by the AMSE Association and the University of Zaragoza through the GESES Research Group, with the support of the SoGReS-MF Research Group from University Jaume I. This edition of the conference paid special attention to modeling and simulation in diverse fields of business management. The 20 papers in this book were carefully reviewed and selected from 52 submissions. They are organized in topical sections on modeling and simulation in finance and accounting; modeling and simulation in business management and economy; and engineering and other general applications.
Modeling and Simulation in Manufacturing and Defense Systems Acquisition: Pathways to Success
by Committee on Modeling Simulation Enhancements for 21st Century Manufacturing AcquisitionA report on Modeling and Simulation in Manufacturing and Defense Systems Acquisition
Modeling and Simulation in Polymer Reaction Engineering: A Modular Approach
by Klaus-Dieter Hungenberg Michael WulkowIntroducing a unique, modular approach to modeling polymerization reactions, this practical book presents examples that are readily applicable in Predici�, C++, MatLab and others. In addition, numerous real-life problems taken from various reactor types and reaction mechanisms allow readers to quickly find their own point of interest. <P><P> A highly useful information source for polymer engineers and researchers in industry and academia.
Modeling and Simulation in the Systems Engineering Life Cycle
by Margaret L. LoperThis easy to read text provides a broad introduction to the fundamental concepts of modeling and simulation (M&S) and systems engineering, highlighting how M&S is used across the entire systems engineering lifecycle. Features: reviews the full breadth of technologies, methodologies and uses of M&S, rather than just focusing on a specific aspect of the field; presents contributions from specialists in each topic covered; introduces the foundational elements and processes that serve as the groundwork for understanding M&S; explores common methods and methodologies used in M&S; discusses how best to design and execute experiments, covering the use of Monte Carlo techniques, surrogate modeling and distributed simulation; explores the use of M&S throughout the systems development lifecycle, describing a number of methods, techniques, and tools available to support systems engineering processes; provides a selection of case studies illustrating the use of M&S in systems engineering across a variety of domains.
Modeling and Simulation in Thermal and Fluids Engineering
by Krishnan MurugesanThis textbook comprehensively covers the fundamentals behind mathematical modeling of engineering problems to obtain the required solution. It comprehensively discusses modeling concepts through conservation principles with a proper blending of mathematical expressions. The text discusses the basics of governing equations in algebraic and differential forms and examines the importance of mathematics as a tool in modeling. It covers important topics including modeling of heat transfer problems, modeling of flow problems, modeling advection-diffusion problems and Navier-Stokes equations in depth. Pedagogical features including solved problems and unsolved exercises are interspersed throughout the text for better understanding. The textbook is primarily written for senior undergraduate and graduate students in the field of mechanical engineering for courses on modeling and simulation. The textbook will be accompanied by teaching resource including a solution manual for the instructors.
Modeling and Simulation of Catalytic Reactors for Petroleum Refining
by Jorge AncheytaModeling and Simulation of Catalytic Reactors for Petroleum Refining deals with fundamental descriptions of the main conversion processes employed in the petroleum refining industry: catalytic hydrotreating, catalytic reforming, and fluid catalytic cracking. Common approaches for modeling of catalytic reactors for steady-state and dynamic simulations are also described and analyzed. Aspects such as thermodynamics, reaction kinetics, process variables, process scheme, and reactor design are discussed in detail from both research and commercial points of view. Results of simulation with the developed models are compared with those determined at pilot plant scale as well as commercial practice. Kinetics data used in the reactor model are either taken from the literature or obtained under controlled experiments at the laboratory.
Modeling and Simulation of Chemical Process Systems
by Nayef GhasemIn this textbook, the author teaches readers how to model and simulate a unit process operation through developing mathematical model equations, solving model equations manually, and comparing results with those simulated through software. It covers both lumped parameter systems and distributed parameter systems, as well as using MATLAB and Simulink to solve the system model equations for both. Simplified partial differential equations are solved using COMSOL, an effective tool to solve PDE, using the fine element method. This book includes end of chapter problems and worked examples, and summarizes reader goals at the beginning of each chapter.
Modeling and Simulation of Discrete Event Systems
by Byoung Kyu Choi Donghun KangComputer modeling and simulation (M&S) allows engineers to study and analyze complex systems. Discrete-event system (DES)-M&S is used in modern management, industrial engineering, computer science, and the military. As computer speeds and memory capacity increase, so DES-M&S tools become more powerful and more widely used in solving real-life problems.Based on over 20 years of evolution within a classroom environment, as well as on decades-long experience in developing simulation-based solutions for high-tech industries, Modeling and Simulation of Discrete-Event Systems is the only book on DES-M&S in which all the major DES modeling formalisms - activity-based, process-oriented, state-based, and event-based - are covered in a unified manner:A well-defined procedure for building a formal model in the form of event graph, ACD, or state graphDiverse types of modeling templates and examples that can be used as building blocks for a complex, real-life modelA systematic, easy-to-follow procedure combined with sample C# codes for developing simulators in various modeling formalismsSimple tutorials as well as sample model files for using popular off-the-shelf simulators such as SIGMA®, ACE®, and Arena®Up-to-date research results as well as research issues and directions in DES-M&SModeling and Simulation of Discrete-Event Systems is an ideal textbook for undergraduate and graduate students of simulation/industrial engineering and computer science, as well as for simulation practitioners and researchers.
Modeling and Simulation of Environmental Systems: A Computation Approach
by Satya Prakash Maurya Akhilesh Kumar Yadav Ramesh SinghThis book presents an overview of modeling and simulation of environmental systems via diverse research problems and pertinent case studies. It is divided into four parts covering sustainable water resources modeling, air pollution modeling, Internet of Things (IoT) based applications in environmental systems, and future algorithms and conceptual frameworks in environmental systems. Each of the chapters demonstrate how the models, indicators, and ecological processes could be applied directly in the environmental sub-disciplines. It includes range of concepts and case studies focusing on a holistic management approach at the global level for environmental practitioners. Features: Covers computational approaches as applied to problems of air and water pollution domain. Delivers generic methods of modeling with spatio-temporal analyses using soft computation and programming paradigms. Includes theoretical aspects of environmental processes with their complexity and programmable mathematical approaches. Adopts a realistic approach involving formulas, algorithms, and techniques to establish mathematical models/computations. Provides a pathway for real-time implementation of complex modeling problem formulations including case studies. This book is aimed at researchers, professionals and graduate students in Environmental Engineering, Computational Engineering/Computer Science, Modeling/Simulation, Environmental Management, Environmental Modeling and Operations Research.
Modeling and Simulation of Fluid Flow and Heat Transfer (Engineering Tribology, Manufacturing and Applied Energy)
by Reshu GuptaIn the rapidly advancing modern world, scientific and technological understanding and innovation are reaching new heights. Computational fluid dynamics and heat transfer have emerged as powerful tools, playing a pivotal role in the analysis and design of complex engineering problems and processes. With the ability to mathematically model various engineering phenomena, these computational tools offer a deeper understanding of intricate dynamics before the physical prototype is created. Widely employed as simulation tools, computational fluid dynamics and heat transfer codes enable the virtual or digital prototype development of products and devices involving complex transport and multiphasic phenomena. They have become an indispensable element of the agile product development environment across diverse sectors of manufacturing, facilitating accelerated product development cycles.Key features of this book: Covers the analysis of advanced thermal engineering systems Explores the simulation of various fluids with slip effect Applies entropy and optimization techniques to thermal engineering systems Discusses heat and mass transfer phenomena Explores fluid flow and heat transfer in porous media Captures recent developments in analytical and computational methods used to investigate the complex mathematical models of fluid dynamics Covers the application of mathematical and computational modeling techniques to fluid flow problems in various geometries Modeling and Simulation of Fluid Flow and Heat Transfer delves into the fascinating world of fluid dynamics and heat transfer modeling, presenting an extensive exploration of these subjects. This book is a valuable resource for researchers, engineers, and students seeking to comprehend and apply numerical methods and computational tools in fluid dynamics and heat transfer problems.
Modeling and Simulation of Fluidized Bed Reactors for Chemical Looping Combustion
by Ramesh K. Agarwal Yali ShaoThe book describes the clean coal technology of chemical looping combustion (CLC) for power generation with pure CO2 capture. The focus of the book is on the modeling and simulation of CLC. It includes fundamental concepts behind CLC and considers all categories of fluidized beds and reactors, including a variety of oxygen carriers. The book includes process simulations with Aspen Plus® software using coal, natural gas, and biomass and computational fluid dynamics (CFD) simulations using both the Eulerian and Lagrangian methods. It describes various drag models, turbulence models, and kinetics models required for CFD simulations of CLC and covers single reactor, partial, and full-simulations, single/multi-stage as well as single-particle simulations, and CLC with reverse flow. A large number of examples for both process simulations using Aspen Plus and CFD simulations using a variety of fluidized beds/reactors employing both the two-fluid and Computational Fluid Dynamics / Discrete Element Method (CFD-DEM) model are provided. Modeling and Simulation of Fluidized Bed Reactors for Chemical Looping Combustion will be an invaluable reference for industry practitioners and researchers in academic and industrial R&D currently working on clean energy technologies and power generation with carbon capture.
Modeling and Simulation of Infectious Diseases: Microscale Transmission, Decontamination and Macroscale Propagation
by Tarek I. ZohdiThe COVID-19 pandemic that started in 2019-2020 has led to a gigantic increase in modeling and simulation of infectious diseases. There are numerous topics associated with this epoch-changing event, such as (a) disease propagation, (b) transmission, (c) decontamination, and (d) vaccines. This is an evolving field. The targeted objective of this book is to expose researchers to key topics in this area, in a very concise manner. The topics selected for discussion have evolved with the progression of the pandemic. Beyond the introductory chapter on basic mathematics, optimization, and machine learning, the book covers four themes in modeling and simulation infectious diseases, specifically: Part 1: Macroscale disease propagation, Part 2: Microscale disease transmission and ventilation system design, Part 3: Ultraviolet viral decontamination, and Part 4: Vaccine design and immune response. It is important to emphasize that the rapid speed at which the simulations operate makes the presented computational tools easily deployable as digital twins, i.e., digital replicas of complex systems that can be inexpensively and safely optimized in a virtual setting and then used in the physical world afterward, thus reducing the costs of experiments and also accelerating development of new technologies.
Modeling and Simulation of Intelligent Transportation Systems (Resilience and Sustainability in Civil, Mechanical, Aerospace and Manufacturing Engineering Systems)
by Wael A. Altabey Mohammad Noori Ahmed Silik Marco Domaneschi Weixing HongAs transport networks become more congested, there is a growing need to adopt policies that manage demand and make full use of existing assets. Advances in information technology are now such that intelligent transportation systems (ITS) offer real potential to meet this challenge by monitoring current conditions, predicting what might happen in the future, and providing the means to manage transport proactively and on an area-wide basis. Modeling and Simulation of Intelligent Transportation Systems provides engineers, professionals, and researchers an intuitive appreciation for ITS theory, related sensor technologies, and other practical applications, including traffic management, safety, design optimization, and sustainability. Provides the theory and practical applications of Intelligent Transport Theory which will be helpful as highway construction recedes as a sustainable long-term solution. Includes several case studies that illustrate the concepts presented throughout.
Modeling and Simulation of Invasive Applications and Architectures (Computer Architecture and Design Methodologies)
by Sascha Roloff Frank Hannig Jürgen TeichThis book covers two main topics: First, novel fast and flexible simulation techniques for modern heterogeneous NoC-based multi-core architectures. These are implemented in the full-system simulator called InvadeSIM and designed to study the dynamic behavior of hundreds of parallel application programs running on such architectures while competing for resources. Second, a novel actor-oriented programming library called ActorX10, which allows to formally model parallel streaming applications by actor graphs and to analyze predictable execution behavior as part of so-called hybrid mapping approaches, which are used to guarantee real-time requirements of such applications at design time independent from dynamic workloads by a combination of static analysis and dynamic embedding.
Modeling and Simulation of Lithium-ion Power Battery Thermal Management (Key Technologies on New Energy Vehicles)
by Junqiu LiThis book focuses on the thermal management technology of lithium-ion batteries for vehicles. It introduces the charging and discharging temperature characteristics of lithium-ion batteries for vehicles, the method for modeling heat generation of lithium-ion batteries, experimental research and simulation on air-cooled and liquid-cooled heat dissipation of lithium-ion batteries, lithium-ion battery heating method based on PTC and wide-line metal film, self-heating using sinusoidal alternating current. This book is mainly for practitioners in the new energy vehicle industry, and it is suitable for reading and reference by researchers and engineering technicians in related fields such as new energy vehicles, thermal management and batteries. It can also be used as a reference book for undergraduates and graduate students in energy and power, electric vehicles, batteries and other related majors.
Modeling and Simulation of Logistics Flows 1: Theory and Fundamentals
by Jean-Michel RéveillacVolume 1 presents successively an introduction followed by 10 chapters and a conclusion: - A logistic approach - an overview of operations research - The basics of graph theory - calculating optimal routes - Dynamic programming - planning and scheduling with PERT and MPM; - the waves of calculations in a network; - spanning trees and touring; - linear programming - modeling of road traffic
Modeling and Simulation of Logistics Flows 2: Dashboards, Traffic Planning and Management
by Jean-Michel RéveillacVolume 2 begins with an introduction and 4 chapters implementing software tools on cases of practical applications and it ends with a conclusion: - The various tools used in this volume; - Operational research with a spreadsheet; - Dashboards with spreadsheets and pivot tables; - Scheduling and planning with a project manager; - The traffic simulation The conclusion shows the new features that are expected to emerge on spreadsheets as well as project managers, developments and convergences between traffic simulators and new infrastructure that are emerging on road networks. Annex 1 focuses on the installation Solver in Microsoft Excel and Annex 2 focuses on the installation of the Java Development Kit
Modeling and Simulation of Logistics Flows 3: Discrete and Continuous Flows in 2D/3D
by Jean-Michel RéveillacVolume 3 begins with an introduction to which are added four chapters focused on modeling and flow simulation in an environment in 2 or 3 dimensions (2D or 3D). They deal with different cases taken from situations found in the field. A conclusion comes close this third book:- The different software used in this third volume;- Computer simulation of discrete flows;- Mixed flow simulation;- Flows in 3D and the evacuation simulation;- Flows in 3D for conveying and storage The conclusion discusses the future developments of the software and their integration into society. At the end of each volume is a bibliography and a list of web links. There is also a glossary explaining some abbreviations, acronyms and some very specific terminology of logistics and operations research.
Modeling and Simulation of Systems Using MATLAB and Simulink
by Devendra K. Chaturvedi<p>Not only do modeling and simulation help provide a better understanding of how real-world systems function, they also enable us to predict system behavior before a system is actually built and analyze systems accurately under varying operating conditions. Modeling and Simulation of Systems Using MATLAB® and Simulink® provides comprehensive, state-of-the-art coverage of all the important aspects of modeling and simulating both physical and conceptual systems. Various real-life examples show how simulation plays a key role in understanding real-world systems. The author also explains how to effectively use MATLAB and Simulink software to successfully apply the modeling and simulation techniques presented. <p>After introducing the underlying philosophy of systems, the book offers step-by-step procedures for modeling different types of systems using modeling techniques, such as the graph-theoretic approach, interpretive structural modeling, and system dynamics modeling. It then explores how simulation evolved from pre-computer days into the current science of today. The text also presents modern soft computing techniques, including artificial neural networks, fuzzy systems, and genetic algorithms, for modeling and simulating complex and nonlinear systems. The final chapter addresses discrete systems modeling. <p>Preparing both undergraduate and graduate students for advanced modeling and simulation courses, this text helps them carry out effective simulation studies. In addition, graduate students should be able to comprehend and conduct simulation research after completing this book.</p>
Modeling and Simulation of Tribological Problems in Technology (CISM International Centre for Mechanical Sciences #593)
by Marco Paggi David HillsThis book conveys, in a self-contained manner, the fundamental concepts for classifying types of contact, the essential mathematical methods for the formulation of contact problems, and the numerical methods required for their solution. In addition to the methodologies, it covers a broad range of applications, including contact problems in mechanical engineering, microelectronics and nanomechanics. All chapters provide both substantial background on the theory and numerical methods, and in-depth treatments of cutting-edge research topics and applications. The book is primarily intended for doctoral students of applied mathematics, mechanics, engineering and physics with a strong interest in the theoretical modelling, numerical simulation and experimental characterization of contact problems in technology. It will also benefit researchers in the above mentioned and neighbouring fields working in academia or at private research and development centres who are interested in a concise yet comprehensive overview of contact mechanics, from its fundamental mathematical background, to the computational methods and the experimental techniques currently available for the solution of contact problems.