- Table View
- List View
Multimodal Computational Attention for Scene Understanding and Robotics
by Boris SchauerteThis book presents state-of-the-art computationalattention models that have been successfully tested in diverse applicationareas and can build the foundation for artificial systems to efficientlyexplore, analyze, and understand natural scenes. It gives a comprehensive overview of the most recentcomputational attention models for processing visual and acoustic input. Itcovers the biological background of visual and auditory attention, as well as bottom-up and top-down attentionalmechanisms and discusses various applications. In the first part new approachesfor bottom-up visual and acoustic saliency models are presented and applied tothe task of audio-visual scene exploration of a robot. In the second part theinfluence of top-down cues for attention modeling is investigated.
Multimodal Intelligent Sensing in Modern Applications
by Masood Ur Rehman Ahmed Zoha Muhammad Ali Jamshed Naeem RamzanDiscover the design, implementation, and analytical techniques for multi-modal intelligent sensing in this cutting-edge text The Internet of Things (IoT) is becoming ever more comprehensively integrated into everyday life. The intelligent systems that power smart technologies rely on increasingly sophisticated sensors in order to monitor inputs and respond dynamically. Multi-modal sensing offers enormous benefits for these technologies, but also comes with greater challenges; it has never been more essential to offer energy-efficient, reliable, interference-free sensing systems for use with the modern Internet of Things. Multimodal Intelligent Sensing in Modern Applications provides an introduction to systems which incorporate multiple sensors to produce situational awareness and process inputs. It is divided into three parts—physical design aspects, data acquisition and analysis techniques, and security and energy challenges—which together cover all the major topics in multi-modal sensing. The result is an indispensable volume for engineers and other professionals looking to design the smart devices of the future. Multimodal Intelligent Sensing in Modern Applications readers will also find: Contributions from multidisciplinary contributors in wireless communications, signal processing, and sensor design Coverage of both software and hardware solutions to sensing challenges Detailed treatment of advanced topics such as efficient deployment, data fusion, machine learning, and more Multimodal Intelligent Sensing in Modern Applications is ideal for experienced engineers and designers who need to apply their skills to Internet of Things and 5G/6G networks. It can also act as an introductory text for graduate researchers into understanding the background, design, and implementation of various sensor types and data analytics tools.
The Multimodal Learning Analytics Handbook
by Michail Giannakos Daniel Spikol Daniele Di Mitri Kshitij Sharma Xavier Ochoa Rawad HammadThis handbook is the first book ever covering the area of Multimodal Learning Analytics (MMLA). The field of MMLA is an emerging domain of Learning Analytics and plays an important role in expanding the Learning Analytics goal of understanding and improving learning in all the different environments where it occurs. The challenge for research and practice in this field is how to develop theories about the analysis of human behaviors during diverse learning processes and to create useful tools that could augment the capabilities of learners and instructors in a way that is ethical and sustainable. Behind this area, the CrossMMLA research community exchanges ideas on how we can analyze evidence from multimodal and multisystem data and how we can extract meaning from this increasingly fluid and complex data coming from different kinds of transformative learning situations and how to best feed back the results of these analyses to achieve positive transformative actions on those learning processes. This handbook also describes how MMLA uses the advances in machine learning and affordable sensor technologies to act as a virtual observer/analyst of learning activities. The book describes how this “virtual nature” allows MMLA to provide new insights into learning processes that happen across multiple contexts between stakeholders, devices and resources. Using such technologies in combination with machine learning, Learning Analytics researchers can now perform text, speech, handwriting, sketches, gesture, affective, or eye-gaze analysis, improve the accuracy of their predictions and learned models and provide automated feedback to enable learner self-reflection. However, with this increased complexity in data, new challenges also arise. Conducting the data gathering, pre-processing, analysis, annotation and sense-making, in a way that is meaningful for learning scientists and other stakeholders (e.g., students or teachers), still pose challenges in this emergent field. This handbook aims to serve as a unique resource for state of the art methods and processes. Chapter 11 of this book is available open access under a CC BY 4.0 license at link.springer.com.
Multimodal Literacy in School Science: Transdisciplinary Perspectives on Theory, Research and Pedagogy
by Len Unsworth Russell Tytler Lisl Fenwick Sally Humphrey Paul Chandler Michele Herrington Lam PhamThis book establishes a new theoretical and practical framework for multimodal disciplinary literacy (MDL) fused with the subject-specific science pedagogies of senior high school biology, chemistry and physics. It builds a compatible alignment of multiple representation and representation construction approaches to science pedagogy with the social semiotic, systemic functional linguistic-based approaches to explicit teaching of disciplinary literacy. The early part of the book explicates the transdisciplinary negotiated theoretical underpinning of the MDL framework, followed by the research-informed repertoire of learning experiences that are then articulated into a comprehensive framework of options for the planning of classroom work. Practical adoption and adaptation of the framework in biology, chemistry and physics classrooms are detailed in separate chapters. The latter chapters indicate the impact of the collaborative research on teachers' professional learning and students’ multimodal disciplinary literacy engagement, concluding with proposals for accommodating emerging developments in MDL in an ever-changing digital communication world. The MDL framework is designed to enable teachers to develop all students' disciplinary literacy competencies. This book will be of interest to researchers, teacher educators and postgraduate students in the field of science education. It will also have appeal to those in literacy education and social semiotics.
Multimodal Optical Diagnostics of Cancer
by Valery V. Tuchin Jürgen Popp Valery ZakharovThis book provides an in-depth description and discussion of different multi-modal diagnostic techniques for cancer detection and treatment using exact optical methods, their comparison, and combination. Coverage includes detailed descriptions of modern state of design for novel methods of optical non-invasive cancer diagnostics; multi-modal methods for earlier cancer diagnostic enhancing the probability of effective cancer treatment; modern clinical trials with novel methods of clinical cancer diagnostics; medical and technical aspects of clinical cancer diagnostics, and long-term monitoring. Biomedical engineers, cancer researchers, and scientists will find the book to be an invaluable resource.Introduces optical imaging strategies;Focuses on multimodal optical diagnostics as a fundamental approach;Discusses novel methods of optical non-invasive cancer diagnostics.
Multimodal Perception and Secure State Estimation for Robotic Mobility Platforms
by Rui Jiang Xinghua Liu Badong Chen Shuzhi Sam GeMultimodal Perception and Secure State Estimation for Robotic Mobility Platforms Enables readers to understand important new trends in multimodal perception for mobile robotics This book provides a novel perspective on secure state estimation and multimodal perception for robotic mobility platforms such as autonomous vehicles. It thoroughly evaluates filter-based secure dynamic pose estimation approaches for autonomous vehicles over multiple attack signals and shows that they outperform conventional Kalman filtered results. As a modern learning resource, it contains extensive simulative and experimental results that have been successfully implemented on various models and real platforms. To aid in reader comprehension, detailed and illustrative examples on algorithm implementation and performance evaluation are also presented. Written by four qualified authors in the field, sample topics covered in the book include: Secure state estimation that focuses on system robustness under cyber-attacks Multi-sensor fusion that helps improve system performance based on the complementary characteristics of different sensors A geometric pose estimation framework to incorporate measurements and constraints into a unified fusion scheme, which has been validated using public and self-collected data How to achieve real-time road-constrained and heading-assisted pose estimation This book will appeal to graduate-level students and professionals in the fields of ground vehicle pose estimation and perception who are looking for modern and updated insight into key concepts related to the field of robotic mobility platforms.
Multimodal Polymers with Supported Catalysts: Design And Production
by Alexandra Romina Albunia Floran Prades Dusan JeremicThis book provides an overview of polyolefine production, including several recent breakthrough innovations in the fields of catalysis, process technology, and materials design. The industrial development of polymers is an extraordinary example of multidisciplinary cooperation, involving experts from different fields. An understanding of structure-property and processing relationships leads to the design of materials with innovative performance profiles. A comprehensive description of the connection between innovative material performance and multimodal polymer design, which incorporates both flexibility and constraints of multimodal processes and catalyst needs, is provided. This book provides a summary of the polymerization process, from the atomistic level to the macroscale, process components, including catalysts, and their influence on final polymer performance. This reference merges academic research and industrial knowledge to fill the gaps between academic research and industrial processes.
Multimodal Safety Management and Human Factors: Crossing the Borders of Medical, Aviation, Road and Rail Industries
by José M. JrSafety management and human factors disciplines are often regarded as subjective and nebulous. This perhaps stems from a variety of, sometimes disparate, activities in the realms of education, industry and research. Aviation is one of the safety-critical industries that has led the development of safety systems and human factors. However, in recent years, safety management and human factors are seen to be progressing well in the road, rail and the medical arena. Multimodal Safety Management and Human Factors is a wide-ranging compendium of contemporary approaches in the aviation, road, rail and medical domains. It brings together 28 chapters from both the academic and professional worlds that focus on applications, tools and strategies in safety management and human factors. It is a wellspring of the practical rather than the theoretical. Safety scientists, human factors industry practitioners, change management advocates, educators and students will find this book extremely relevant and challenging.
Multimodal Transport Systems
by Slim Hammadi Mekki KsouriThe use and management of multimodal transport systems, including car-pooling and goods transportation, have become extremely complex, due to their large size (sometimes several thousand variables), the nature of their dynamic relationships as well as the many constraints to which they are subjected. The managers of these systems must ensure that the system works as efficiently as possible by managing the various causes of malfunction of the transport system (vehicle breakdowns, road obstructions, accidents, etc.). The detection and resolution of conflicts, which are particularly complex and must be dealt with in real time, are currently processed manually by operators. However, the experience and abilities of these operators are no longer sufficient when faced with the complexity of the problems to be solved. It is thus necessary to provide them with an interactive tool to help with the management of disturbances, enabling them to identify the different disturbances, to characterize and prioritize these disturbances, to process them by taking into account their specifics and to evaluate the impact of the decisions in real time. Each chapter of this book can be broken down into an approach for solving a transport problem in 3 stages, i.e. modeling the problem, creating optimization algorithms and validating the solutions. The management of a transport system calls for knowledge of a variety of theories (problem modeling tools, multi-objective problem classification, optimization algorithms, etc.). The different constraints increase its complexity drastically and thus require a model that represents as far as possible all the components of a problem in order to better identify it and propose corresponding solutions. These solutions are then evaluated according to the criteria of the transport providers as well as those of the city transport authorities. This book consists of a state of the art on innovative transport systems as well as the possibility of coordinating with the current public transport system and the authors clearly illustrate this coordination within the framework of an intelligent transport system. Contents 1. Dynamic Car-pooling, Slim Hammadi and Nawel Zangar. 2. Simulation of Urban Transport Systems, Christian Tahon, Thérèse Bonte and Alain Gibaud. 3. Real-time Fleet Management: Typology and Methods, Frédéric Semet and Gilles Goncalves. 4. Solving the Problem of Dynamic Routes by Particle Swarm, Mostefa Redouane Khouahjia, Laetitia Jourdan and El Ghazali Talbi. 5. Optimization of Traffic at a Railway Junction: Scheduling Approaches Based on Timed Petri Nets, Thomas Bourdeaud’huy and Benoît Trouillet. About the Authors Slim Hammadi is Full Professor at the Ecole Centrale de Lille in France, and Director of the LAGIS Team on Optimization of Logistic systems. He is an IEEE Senior Member and specializes in distributed optimization, multi-agent systems, supply chain management and metaheuristics. Mekki Ksouri is Professor and Head of the Systems Analysis, Conception and Control Laboratory at Tunis El Manar University, National Engineering School of Tunis (ENIT) in Tunisia. He is an IEEE Senior Member and specializes in control systems, nonlinear systems, adaptive control and optimization. The multimodal transport network customers need to be oriented during their travels. A multimodal information system (MIS) can provide customers with a travel support tool, allowing them to express their demands and providing them with the appropriate responses in order to improve their travel conditions. This book develops methodologies in order to realize a MIS tool capable of ensuring the availability of permanent multimodal information for customers before and while traveling, considering passengers mobility.
Multimodality Imaging: For Intravascular Application
by Qifa Zhou Zhongping ChenThis book provides a state-of-the-art overview of the combined use of imaging modalities to obtain important functional and morphological information on intravascular disease and enhance disease detection. It discusses the integration of intravascular ultrasound (IVUS, intravascular optical coherence tomography (OCT), intravascular photoacoustic imaging (IVPA) and acoustic radiation force optical coherence elastography (ARF-OCE), and introduces the integration of multimodality imaging systems, such as IR and florescence. It includes the latest research advances and numerous imaging photos to offer readers insights into current intravascular applications. It is a valuable resource for students, scientists and physicians wanting to gain a deeper understanding of multimodality imaging tools.
Multimodality in Architecture: Collaboration, Technology and Education
by Ju Hyun Lee Michael J. Ostwald Mi Jeong KimThis book examines multimodality in architecture and its impacts on collaborative, technical and educational processes or systems. Multimodality is becoming increasingly critical in contemporary architectural practice and education. Creative design teams face new challenges when they embrace new modes of communication, technology, and knowledge development processes. From diverse online modes of communication to shared digital environments, generative AI and advanced hardware solutions, new modes of information creation, sharing, and application are changing the ways architects and designers work.The book presents new research which empowers international researchers and designers to work more effectively in a diverse range of digital environments.Whether the readers are architects, teachers, students, or scholars, this book provides critical insights and practical tools for understanding and optimising processes in architecture and design.
Multinary Alloys Based on II-VI Semiconductors
by Vasyl TomashykA companion volume to Ternary Alloys Based on II-VI Semiconductor Compounds (CRC Press, 2013) and Quaternary Alloys Based on II-VI Semiconductor Compounds (CRC Press, 2014), Multinary Alloys Based on II-VI Semiconductors provides up-to-date experimental and theoretical information on phase relations based on II-VI semiconductor systems with five or
Multinary Alloys Based on III-V Semiconductors
by Vasyl TomashykIII-V semiconductors have attracted considerable attention due to their applications in the fabrication of electronic and optoelectronic devices as light emitting diodes and solar cells. The electrical properties of these semiconductors can also be tuned by adding impurity atoms. Because of their wide application in various devices, the search for new semiconductor materials and the improvement of existing materials is an important field of study. This book covers all known information about phase relations in multinary systems based on III-V semiconductors, providing the first systematic account of phase equilibria in multinary systems based on III-V semiconductors and making research originally published in Russian accessible to the wider scientific community. This book will be of interest to undergraduate and graduate students studying materials science, solid state chemistry, and engineering. It will also be relevant for researchers at industrial and national laboratories, in addition to phase diagram researchers, inorganic chemists, and solid state physicists. Features: Provides up-to-date experimental and theoretical information Allows readers to synthesize semiconducting materials with predetermined properties Delivers a critical evaluation of many industrially important systems presented in the form of two-dimensional sections for the condensed phases
Multinary Alloys Based on IV-VI and IV-VI2 Semiconductors
by Vasyl TomashykIV-VI and IV-VI2 semiconductors have attracted considerable attention due to their applications in the fabrication of electronic and optoelectronic devices as infrared lasers and detectors. The electrical properties of these semiconductors can also be tuned by adding impurity atoms. Because of their wide application in various devices, the search for new semiconductor materials and the improvement of existing materials is an important field of study. Doping with impurities is a common method of modifying and diversifying the properties of physical and chemical semiconductors. This book covers all known information about the phase relations in multinary systems based on IV-VI and IV-VI2 semiconductors, providing the first systematic account of phase equilibria in multinary systems based on IV-VI and IV-VI2 semiconductors and making research originally published in Ukrainian and Russian accessible to the wider scientific community. This book will be of interest to undergraduate and graduate students studying materials science, solid state chemistry, and engineering. It will also be relevant for researchers at industrial and national laboratories, in addition to researchers of phase equilibria, inorganic chemists, and solid state physicists.Key Features: Provides up-to-date experimental and theoretical information Allows readers to synthesize semiconducting materials with predetermined properties Delivers a critical evaluation of many industrially important systems presented in the form of two-dimensional sections for the condensed phases
Multiobjective Optimization Methodology: A Jumping Gene Approach (Industrial Electronics)
by K.S. Tang T.M. Chan R.J. Yin K.F. ManThe first book to focus on jumping genes outside bioscience and medicine, Multiobjective Optimization Methodology: A Jumping Gene Approach introduces jumping gene algorithms designed to supply adequate, viable solutions to multiobjective problems quickly and with low computational cost. Better Convergence and a Wider Spread of Nondominated Solutions The book begins with a thorough review of state-of-the-art multiobjective optimization techniques. For readers who may not be familiar with the bioscience behind the jumping gene, it then outlines the basic biological gene transposition process and explains the translation of the copy-and-paste and cut-and-paste operations into a computable language. To justify the scientific standing of the jumping genes algorithms, the book provides rigorous mathematical derivations of the jumping genes operations based on schema theory. It also discusses a number of convergence and diversity performance metrics for measuring the usefulness of the algorithms. Practical Applications of Jumping Gene Algorithms Three practical engineering applications showcase the effectiveness of the jumping gene algorithms in terms of the crucial trade-off between convergence and diversity. The examples deal with the placement of radio-to-fiber repeaters in wireless local-loop systems, the management of resources in WCDMA systems, and the placement of base stations in wireless local-area networks. Offering insight into multiobjective optimization, the authors show how jumping gene algorithms are a useful addition to existing evolutionary algorithms, particularly to obtain quick convergence solutions and solutions to outliers.
Multiobjective Programming and Planning
by Jared L. CohonThis text takes a broad view of multiobjective programming, emphasizing the methods most useful for continuous problems. It reviews multiobjective programming methods in the context of public decision-making problems, developing each problem within a context that addresses practical aspects of planning issues. Topics include a review of linear programming, the formulation of the general multiobjective programming problem, classification of multiobjective programming methods, techniques for generating noninferior solutions, multiple-decision-making methods, multiobjective analysis of water resource problems, and multiobjective analysis of facility location problems. 1978 edition.
Multiobjective Shape Design in Electricity and Magnetism
by Paolo Di BarbaMultiobjective Shape Design in Electricity and Magnetism is entirely focused on electric and magnetic field synthesis, with special emphasis on the optimal shape design of devices when conflicting objectives are to be fulfilled. Direct problems are solved by means of finite-element analysis, while evolutionary computing is used to solve multiobjective inverse problems. This approach, which is original, is coherently developed throughout the whole manuscript. The use of game theory, dynamic optimisation, and Bayesian imaging strengthens the originality of the book. Covering the development of multiobjective optimisation in the past ten years, Multiobjective Shape Design in Electricity and Magnetism is a concise, comprehensive and up-to-date introduction to this research field, which is growing in the community of electricity and magnetism. Theoretical issues are illustrated by practical examples. In particular, a test problem is solved by different methods so that, by comparison of results, advantages and limitations of the various methods are made clear.
Multipactor in Accelerating Cavities (Particle Acceleration and Detection)
by Valery D. Shemelin Sergey A. BelomestnykhThis book is written by two world-recognized experts in radio frequency (RF) systems for particle accelerators and is based on many years of experience in dealing with the multipactor phenomenon. The authors introduce and review multipactor in RF cavities for scientists and engineers working in the field of accelerator physics and technology. The multipactor phenomenon of unintended electron avalanches occurs in the RF cavities commonly and quite often is a performance-limiting factor. The book starts with an Introductory Overview which contains historical observations and brief description of most common aspects of the phenomenon. Part I deals with the multipactor in a flat gap. It starts with description of the dynamics of electrons, derivation of the stability condition and analyzing influence of several factors on the multipactor. Then, the initial considerations are extended to derive a generalized phase stability and finally a particular case, called ping-pong multipacting, is considered. The part one is concluded with a brief review of computer codes used in multipactor simulations. Part II is dedicated to the multipactor in crossed RF fields, the typical situation in accelerating cavities. Two cases of MP are considered: a two-point multipactor near the cavity equator in elliptical cavities and a one-point multipactor. Part III describes optimization of the cavity shapes geared toward designing multipactor-free structures. The book will serve as an importance reference on multipactor for those involved in developing and operating radio frequency cavities for particle accelerators.
Multipath TCP for User Cooperation in Wireless Networks
by Dizhi Zhou Wei SongThis brief presents several enhancement modules to Multipath Transmission Control Protocol (MPTCP) in order to support stable and efficient multipath transmission with user cooperation in the Long Term Evolution (LTE) network. The text explains how these enhancements provide a stable aggregate throughput to the upper-layer applications; guarantee a steady goodput, which is the real application-layer perceived throughput; and ensure that the local traffic of the relays is not adversely affected when the relays are forwarding data for the destination. The performance of the proposed solutions is extensively evaluated using various scenarios. The simulation results demonstrate that the proposed modules can achieve a stable aggregate throughput and significantly improve the goodput by 1. 5 times on average. The brief also shows that these extensions can well respect the local traffic of the relays and motivate the relay users to provide the relaying service.
Multiphase Biomedical Materials
by T. Tsuruta A. NakajimaFollowing many reports that were published in the last two decades on correlations of multiphase structures of the surface of materials with their antithrombogenicity or biocompatibility a research project ''Design of Multiphase Biomedical Materials'' was carried out in Japan between 1982 and 1986. The objective of this research project was to elucidate various aspects of biomedical behaviour of multiphase systems at the interface with living bodies at the molecular, cellular and tissue levels. Multiphase materials studied cover polymers having microphase-separated structures, hydrogels, immobilized enzymes (or cells), ceramics and metallic materials. The research project was carried out by the following subgroups: -- Multiphase biomedical materials with microdomain structures -- Multiphase biomedical materials containing liquid components -- Hybrid-type multiphase biomedical materials with biological components -- Inorganic and metallic multiphase biomedical materials -- Methods for analysis and evaluation of multiphase biomedical materials This book contains the results of the research project in an edited form and aims to provoke a better understanding about various aspects of cell--material interactions in which the multiphase systems play a crucial role.
Multiphase Bioreactor Design
by Joaquim M.S. Cabral Manuel Mota Johannes TramperBioreaction engineering is fundamental to the optimization of biotechnological processes and the production of biochemicals by enzymes, microbial, plant and animal cells and higher organisms.A reference text for postgraduate students and researchers in biochemical engineering and bioreactor design, Multiphase Bioreactor Design describes the
Multiphase Catalytic Reactors: Theory, Design, Manufacturing, and Applications
by Zeynep Ilsen Önsan Ahmet Kerim AvciProvides a holistic approach to multiphase catalytic reactors from their modeling and design to their applications in industrial manufacturing of chemicals Covers theoretical aspects and examples of fixed-bed, fluidized-bed, trickle-bed, slurry, monolith and microchannel reactors Includes chapters covering experimental techniques and practical guidelines for lab-scale testing of multiphase reactors Includes mathematical content focused on design equations and empirical relationships characterizing different multiphase reactor types together with an assortment of computational tools Involves detailed coverage of multiphase reactor applications such as Fischer-Tropsch synthesis, fuel processing for fuel cells, hydrotreating of oil fractions and biofuels processing
Multiphase Equilibria of Complex Reservoir Fluids: An Equation of State Modeling Approach (Petroleum Engineering)
by Huazhou LiThis short monograph focuses on the theoretical backgrounds and practical implementations concerning the thermodynamic modeling of multiphase equilibria of complex reservoir fluids using cubic equations of state. It aims to address the increasing needs of multiphase equilibrium calculations that arise in the compositional modeling of multiphase flow in reservoirs and wellbores. It provides a state-of-the-art coverage on the recent improvements of cubic equations of state. Considering that stability test and flash calculation are two basic tasks involved in any multiphase equilibrium calculations, it elaborates on the rigorous mathematical frameworks dedicated to stability test and flash calculation. A special treatment is given to the new algorithms that are recently developed to perform robust and efficient three-phase equilibrium calculations.This monograph will be of value to graduate students who conduct research in the field of phase behavior, as well as software engineers who work on the development of multiphase equilibrium calculation algorithms.
Multiphase Flow and Heat Transfer in Pebble Bed Reactor Core
by Shengyao Jiang Jiyuan Tu Xingtuan Yang Nan GuiThis book introduces readers to gas flows and heat transfer in pebble bed reactor cores. It addresses fundamental issues regarding experimental and modeling methods for complex multiphase systems, as well as relevant applications and recent research advances. The numerical methods and experimental measurements/techniques used to solve pebble flows, as well as the content on radiation modeling for high-temperature pebble beds, will be of particular interest. This book is intended for a broad readership, including researchers and practitioners, and is sure to become a key reference resource for students and professionals alike.
Multiphase Flow Dynamics: A Perspective from the Brazilian Academy and Industry (Lecture Notes in Mechanical Engineering)
by Marcio Ferreira Martins Rogério Ramos Humberto BelichThis book presents isothermal and non-isothermal multiphase flows with and without phase change or chemical reactions. Six main axes of multiphase flow are covered in a strategic order: Multiphase Flow in Industry, Multiphase Flow Measurement and Instrumentation, Multiphase Flow With Phase Change & Chemical Reactions, Multiphase Flow Modeling, Experimental Multiphase Flow, and Wet and Dry Particulate Systems. Each part is opened by mini-reviews written by internationally prominent researchers from the academy and industry. The content is of interest to researchers and engineers working in mining, oil and gas, power, nuclear, chemical process, space, food, biomedical, micro and nanotechnology, and other industries.