Browse Results

Showing 46,976 through 47,000 of 72,964 results

Neural Interface: Frontiers and Applications (Advances in Experimental Medicine and Biology #1101)

by Xiaoxiang Zheng

This book focuses on the frontiers of neural interface technology, including hardware, software, neural decoding and encoding, control systems, and system integration. It also discusses applications for neuroprosthetics, neural diseases and neurorobotics, and the toolkits for basic neuroscience. A neural interface establishes a direct communication channel with the central or peripheral nervous system (CNS or PNS), and enables the nervous system to interact directly with the external devices. Recent advances in neuroscience and engineering are speeding up neural interface technology, paving the way for assisting, augmenting, repairing or restoring sensorimotor and other cognitive functions impaired due to neurological disease or trauma, and so improving the quality of life of those affected. Neural interfaces are now being explored in applications as diverse as rehabilitation, accessibility, gaming, education, recreation, robotics and human enhancement. Neural interfaces also represent a powerful tool to address fundamental questions in neuroscience. Recent decades have witnessed tremendous advances in the field, with a huge impact not only in the development of neuroprosthetics, but also in our basic understanding of brain function. Neural interface technology can be seen as a bridge across the traditional engineering and basic neuroscience. This book provides researchers, graduate and upper undergraduate students from a wide range of disciplines with a cutting-edge and comprehensive summary of neural interface engineering research.

A Neural Network Approach to Fluid Quantity Measurement in Dynamic Environments

by Edin Terzic Romesh Nagarajah Muhammad Alamgir Jenny Terzic

Sloshing causes liquid to fluctuate, making accurate level readings difficult to obtain in dynamic environments. The measurement system described uses a single-tube capacitive sensor to obtain an instantaneous level reading of the fluid surface, thereby accurately determining the fluid quantity in the presence of slosh. A neural network based classification technique has been applied to predict the actual quantity of the fluid contained in a tank under sloshing conditions. In A neural network approach to fluid quantity measurement in dynamic environments, effects of temperature variations and contamination on the capacitive sensor are discussed, and the authors propose that these effects can also be eliminated with the proposed neural network based classification system. To examine the performance of the classification system, many field trials were carried out on a running vehicle at various tank volume levels that range from 5 L to 50 L. The effectiveness of signal enhancement on the neural network based signal classification system is also investigated. Results obtained from the investigation are compared with traditionally used statistical averaging methods, and proves that the neural network based measurement system can produce highly accurate fluid quantity measurements in a dynamic environment. Although in this case a capacitive sensor was used to demonstrate measurement system this methodology is valid for all types of electronic sensors. The approach demonstrated in A neural network approach to fluid quantity measurement in dynamic environments can be applied to a wide range of fluid quantity measurement applications in the automotive, naval and aviation industries to produce accurate fluid level readings. Students, lecturers, and experts will find the description of current research about accurate fluid level measurement in dynamic environments using neural network approach useful.

Neural Network-Based Adaptive Control of Uncertain Nonlinear Systems

by Kasra Esfandiari Farzaneh Abdollahi Heidar A. Talebi

The focus of this book is the application of artificial neural networks in uncertain dynamical systems. It explains how to use neural networks in concert with adaptive techniques for system identification, state estimation, and control problems. The authors begin with a brief historical overview of adaptive control, followed by a review of mathematical preliminaries. In the subsequent chapters, they present several neural network-based control schemes. Each chapter starts with a concise introduction to the problem under study, and a neural network-based control strategy is designed for the simplest case scenario. After these designs are discussed, different practical limitations (i.e., saturation constraints and unavailability of all system states) are gradually added, and other control schemes are developed based on the primary scenario. Through these exercises, the authors present structures that not only provide mathematical tools for navigating control problems, but also supply solutions that are pertinent to real-life systems.

Neural Network Control of Nonlinear Discrete-Time Systems (Automation and Control Engineering)

by Jagannathan Sarangapani

Intelligent systems are a hallmark of modern feedback control systems. But as these systems mature, we have come to expect higher levels of performance in speed and accuracy in the face of severe nonlinearities, disturbances, unforeseen dynamics, and unstructured uncertainties. Artificial neural networks offer a combination of adaptability, parallel processing, and learning capabilities that outperform other intelligent control methods in more complex systems.Borrowing from BiologyExamining neurocontroller design in discrete-time for the first time, Neural Network Control of Nonlinear Discrete-Time Systems presents powerful modern control techniques based on the parallelism and adaptive capabilities of biological nervous systems. At every step, the author derives rigorous stability proofs and presents simulation examples to demonstrate the concepts.Progressive DevelopmentAfter an introduction to neural networks, dynamical systems, control of nonlinear systems, and feedback linearization, the book builds systematically from actuator nonlinearities and strict feedback in nonlinear systems to nonstrict feedback, system identification, model reference adaptive control, and novel optimal control using the Hamilton-Jacobi-Bellman formulation. The author concludes by developing a framework for implementing intelligent control in actual industrial systems using embedded hardware.Neural Network Control of Nonlinear Discrete-Time Systems fosters an understanding of neural network controllers and explains how to build them using detailed derivations, stability analysis, and computer simulations.

Neural Network Control Of Robot Manipulators And Non-Linear Systems

by F W Lewis S. Jagannathan A Yesildirak

There has been great interest in "universal controllers" that mimic the functions of human processes to learn about the systems they are controlling on-line so that performance improves automatically. Neural network controllers are derived for robot manipulators in a variety of applications including position control, force control, link flexibility stabilization and the management of high-frequency joint and motor dynamics.The first chapter provides a background on neural networks and the second on dynamical systems and control. Chapter three introduces the robot control problem and standard techniques such as torque, adaptive and robust control. Subsequent chapters give design techniques and Stability Proofs For NN Controllers For Robot Arms, Practical Robotic systems with high frequency vibratory modes, force control and a general class of non-linear systems. The last chapters are devoted to discrete- time NN controllers. Throughout the text, worked examples are provided.

Neural Network Methods for Dynamic Equations on Time Scales (SpringerBriefs in Applied Sciences and Technology)

by Svetlin Georgiev

This book aims to handle dynamic equations on time scales using artificial neural network (ANN). Basic facts and methods for ANN modeling are considered. The multilayer artificial neural network (ANN) model is introduced for solving of dynamic equations on arbitrary time scales. A multilayer ANN model with one input layer containing a single node, a hidden layer with m nodes, and one output node are investigated. The feed-forward neural network model and unsupervised error back-propagation algorithm are developed. Modification of network parameters is done without the use of any optimization technique. The regression-based neural network (RBNN) model is introduced for solving dynamic equations on arbitrary time scales. The RBNN trial solution of dynamic equations is obtained by using the RBNN model for single input and single output system. A variety of initial and boundary value problems are solved. The Chebyshev neural network (ChNN) model and Levendre neural network model are developed. The ChNN trial solution of dynamic equations is obtained by using the ChNN model for single input and single output system. This book is addressed to a wide audience of specialists such as mathematicians, physicists, engineers, and biologists. It can be used as a textbook at the graduate level and as a reference book for several disciplines.

Neural Network Modeling: Statistical Mechanics and Cybernetic Perspectives

by P. S. Neelakanta Dolores DeGroff

Neural Network Modeling offers a cohesive approach to the statistical mechanics and principles of cybernetics as a basis for neural network modeling. It brings together neurobiologists and the engineers who design intelligent automata to understand the physics of collective behavior pertinent to neural elements and the self-control aspects of neurocybernetics. The theoretical perspectives and explanatory projections portray the most current information in the field, some of which counters certain conventional concepts in the visualization of neuronal interactions.

Neural Networks and Learning Algorithms in MATLAB (Synthesis Lectures on Intelligent Technologies)

by Oscar Castillo Rathinasamy Sakthivel Mohammad Hosein Sabzalian Fayez F. El-Sousy Ardahir Mohammadazadeh Saleh Mobayen

This book explains the basic concepts, theory and applications of neural networks in a simple unified approach with clear examples and simulations in the MATLAB programming language. The scripts herein are coded for general purposes to be easily extended to a variety of problems in different areas of application. They are vectorized and optimized to run faster and be applicable to high-dimensional engineering problems. This book will serve as a main reference for graduate and undergraduate courses in neural networks and applications. This book will also serve as a main basis for researchers dealing with complex problems that require neural networks for finding good solutions in areas, such as time series prediction, intelligent control and identification. In addition, the problem of designing neural network by using metaheuristics, such as the genetic algorithms and particle swarm optimization, with one objective and with multiple objectives, is presented.

Neural Networks and Micromechanics

by Tatiana Baidyk Ernst Kussul Donald C. Wunsch

This is an interdisciplinary field of research involving the use of neural network techniques for image recognition applied to tasks in the area of micromechanics. The book is organized into chapters on classic neural networks and novel neural classifiers; recognition of textures and object forms; micromechanics; and adaptive algorithms with neural and image recognition applications. The authors include theoretical analysis of the proposed approach, they describe their machine tool prototypes in detail, and they present results from experiments involving microassembly, and handwriting and face recognition. This book will benefit scientists, researchers and students working in artificial intelligence, particularly in the fields of image recognition and neural networks, and practitioners in the area of microengineering.

Neural Networks and Statistical Learning

by Ke-Lin Du M. N. Swamy

This book provides a broad yet detailed introduction to neural networks and machine learning in a statistical framework. A single, comprehensive resource for study and further research, it explores the major popular neural network models and statistical learning approaches with examples and exercises and allows readers to gain a practical working understanding of the content. This updated new edition presents recently published results and includes six new chapters that correspond to the recent advances in computational learning theory, sparse coding, deep learning, big data and cloud computing.Each chapter features state-of-the-art descriptions and significant research findings. The topics covered include:• multilayer perceptron;• the Hopfield network;• associative memory models;• clustering models and algorithms;• t he radial basis function network;• recurrent neural networks;• nonnegative matrix factorization;• independent component analysis;•probabilistic and Bayesian networks; and• fuzzy sets and logic.Focusing on the prominent accomplishments and their practical aspects, this book provides academic and technical staff, as well as graduate students and researchers with a solid foundation and comprehensive reference on the fields of neural networks, pattern recognition, signal processing, and machine learning.

Neural Networks for Electronics Hobbyists: A Non-technical Project-based Introduction

by Richard McKeon

Learn how to implement and build a neural network with this non-technical, project-based book as your guide. As you work through the chapters, you'll build an electronics project, providing a hands-on experience in training a network. There are no prerequisites here and you won't see a single line of computer code in this book. Instead, it takes a hardware approach using very simple electronic components. You'll start off with an interesting non-technical introduction to neural networks, and then construct an electronics project. The project isn't complicated, but it illustrates how back propagation can be used to adjust connection strengths or "weights" and train a network. By the end of this book, you'll be able to take what you've learned and apply it to your own projects. If you like to tinker around with components and build circuits on a breadboard, Neural Networks for Electronics Hobbyists is the book for you. What You'll LearnGain a practical introduction to neural networksReview techniques for training networks with electrical hardware and supervised learningUnderstand how parallel processing differs from standard sequential programmingWho This Book Is ForAnyone interest in neural networks, from electronic hobbyists looking for an interesting project to build, to a layperson with no experience. Programmers familiar with neural networks but have only implemented them using computer code will also benefit from this book.

Neural Networks for Hydrological Modeling

by Robert J. Abrahart Pauline E. Kneale Linda M. See

A new approach to the fast-developing world of neural hydrological modelling, this book is essential reading for academics and researchers in the fields of water sciences, civil engineering, hydrology and physical geography. Each chapter has been written by one or more eminent experts working in various fields of hydrological modelling. The b

Neural Networks for Robotics: An Engineering Perspective

by Nancy Arana-Daniel Alma Y. Alanis Carlos Lopez-Franco

The book offers an insight on artificial neural networks for giving a robot a high level of autonomous tasks, such as navigation, cost mapping, object recognition, intelligent control of ground and aerial robots, and clustering, with real-time implementations. The reader will learn various methodologies that can be used to solve each stage on autonomous navigation for robots, from object recognition, clustering of obstacles, cost mapping of environments, path planning, and vision to low level control. These methodologies include real-life scenarios to implement a wide range of artificial neural network architectures. Includes real-time examples for various robotic platforms. Discusses real-time implementation for land and aerial robots. Presents solutions for problems encountered in autonomous navigation. Explores the mathematical preliminaries needed to understand the proposed methodologies. Integrates computing, communications, control, sensing, planning, and other techniques by means of artificial neural networks for robotics.

Neural Networks, Machine Learning, and Image Processing: Mathematical Modeling and Applications

by Manoj Sahni Ritu Sahni Jose M. Merigo

SECTION I Mathematical Modeling and Neural Network’ Mathematical Essence Chapter 1 Mathematical Modeling on Thermoregulation in Sarcopenia1.1. Introduction 1.2. Discretization 1.3. Modeling and Simulation of Basal Metabolic Rate and Skin Layers Thickness 1.4. Mathematical Model and Boundary Conditions 1.5. Solution of the Model 1.6. Numerical Results and discussion 1.7. Conclusion References Chapter 2 Multi-objective University Course Scheduling for Un

Neural Representations of Natural Language (Studies in Computational Intelligence #783)

by Lyndon White Roberto Togneri Wei Liu Mohammed Bennamoun

This book offers an introduction to modern natural language processing using machine learning, focusing on how neural networks create a machine interpretable representation of the meaning of natural language. Language is crucially linked to ideas – as Webster’s 1923 “English Composition and Literature” puts it: “A sentence is a group of words expressing a complete thought”. Thus the representation of sentences and the words that make them up is vital in advancing artificial intelligence and other “smart” systems currently being developed. Providing an overview of the research in the area, from Bengio et al.’s seminal work on a “Neural Probabilistic Language Model” in 2003, to the latest techniques, this book enables readers to gain an understanding of how the techniques are related and what is best for their purposes. As well as a introduction to neural networks in general and recurrent neural networks in particular, this book details the methods used for representing words, senses of words, and larger structures such as sentences or documents. The book highlights practical implementations and discusses many aspects that are often overlooked or misunderstood. The book includes thorough instruction on challenging areas such as hierarchical softmax and negative sampling, to ensure the reader fully and easily understands the details of how the algorithms function. Combining practical aspects with a more traditional review of the literature, it is directly applicable to a broad readership. It is an invaluable introduction for early graduate students working in natural language processing; a trustworthy guide for industry developers wishing to make use of recent innovations; and a sturdy bridge for researchers already familiar with linguistics or machine learning wishing to understand the other.

Neural Reprogramming: Methods and Protocols (Methods in Molecular Biology #2352)

by Henrik Ahlenius

This detailed book brings together a number of state-of-the-art protocols to generate different types of neural cells through the use of reprogramming technologies. Additionally, the volume explores different aspects of functional evaluation and applications of reprogrammed neural cells as well as in silico methods to aid reprogramming efforts. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Neural Reprogramming: Methods and Protocols provides ample experimental experience and guidance for anyone, be it experienced researcher or beginner, to generate, validate, and apply reprogrammed neural cells in their research.

Neural Text-to-Speech Synthesis (Artificial Intelligence: Foundations, Theory, and Algorithms)

by Xu Tan

Text-to-speech (TTS) aims to synthesize intelligible and natural speech based on the given text. It is a hot topic in language, speech, and machine learning research and has broad applications in industry. This book introduces neural network-based TTS in the era of deep learning, aiming to provide a good understanding of neural TTS, current research and applications, and the future research trend. This book first introduces the history of TTS technologies and overviews neural TTS, and provides preliminary knowledge on language and speech processing, neural networks and deep learning, and deep generative models. It then introduces neural TTS from the perspective of key components (text analyses, acoustic models, vocoders, and end-to-end models) and advanced topics (expressive and controllable, robust, model-efficient, and data-efficient TTS). It also points some future research directions and collects some resources related to TTS. This book is the first to introduce neural TTS in a comprehensive and easy-to-understand way and can serve both academic researchers and industry practitioners working on TTS.

Neural Tissue Biomechanics

by Lynne E. Bilston

Damage to the central nervous system resulting from pathological mechanical loading can occur as a result of trauma or disease. Such injuries lead to significant disability and mortality. The peripheral nervous system, while also subject to injury from trauma and disease, also transduces physiological loading to give rise to sensation, and mechanotransduction is also thought to play a role in neural development and growth. This book gives a complete and quantitative description of the fundamental mechanical properties of neural tissues, and their responses to both physiological and pathological loading. This book reviews the methods used to characterize the nonlinear viscoelastic properties of central and peripheral neural tissues, and the mathematical and sophisticated computational models used to describe this behaviour. Mechanisms and models of neural injury from both trauma and disease are reviewed from the molecular to macroscopic scale. The book provides a comprehensive picture of the mechanical and biological response of neural tissues to the full spectrum of mechanical loading to which they are exposed. This book provides a comprehensive reference for professionals involved in pre prevention of injury to the nervous system, whether this arises from trauma or disease.

Neuro-Fuzzy Equalizers for Mobile Cellular Channels

by K.C. Raveendranathan

Equalizers are present in all forms of communication systems. Neuro-Fuzzy Equalizers for Mobile Cellular Channels details the modeling of a mobile broadband communication channel and designing of a neuro-fuzzy adaptive equalizer for it. This book focuses on the concept of the simulation of wireless channel equalizers using the adaptive-network-based fuzzy inference system (ANFIS). The book highlights a study of currently existing equalizers for wireless channels. It discusses several techniques for channel equalization, including the type-2 fuzzy adaptive filter (type-2 FAF), compensatory neuro-fuzzy filter (CNFF), and radial basis function (RBF) neural network. Neuro-Fuzzy Equalizers for Mobile Cellular Channels starts with a brief introduction to channel equalizers, and the nature of mobile cellular channels with regard to the frequency reuse and the resulting CCI. It considers the many channel models available for mobile cellular channels, establishes the mobile indoor channel as a Rayleigh fading channel, presents the channel equalization problem, and focuses on various equalizers for mobile cellular channels. The book discusses conventional equalizers like LE and DFE using a simple LMS algorithm and transversal equalizers. It also covers channel equalization with neural networks and fuzzy logic, and classifies various equalizers. This being a fairly new branch of study, the book considers in detail the concept of fuzzy logic controllers in noise cancellation problems and provides the fundamental concepts of neuro-fuzzy. The final chapter offers a recap and explores venues for further research. This book also establishes a common mathematical framework of the equalizers using the RBF model and develops a mathematical model for ultra-wide band (UWB) channels using the channel co-variance matrix (CCM). Introduces the novel concept of the application of adaptive-network-based fuzzy inference system (ANFIS) in the design of wireless channel equalizers Provides model ultra-wide band (UWB) channels using channel co-variance matrix Offers a formulation of a unified radial basis function (RBF) framework for ANFIS-based and fuzzy adaptive filter (FAF) Type II, as well as compensatory neuro-fuzzy equalizers Includes extensive use of MATLAB® as the simulation tool in all the above cases

Neuro Fuzzy Hybrid Models for Classification in Medical Diagnosis (SpringerBriefs in Applied Sciences and Technology)

by Patricia Melin Juan Carlos Guzmán German Prado-Arechiga

This book is focused on the use of intelligent techniques, such as fuzzy logic, neural networks and bio-inspired algorithms, and their application in medical diagnosis. The main idea is that the proposed method may be able to adapt to medical diagnosis problems in different possible areas of the medicine and help to have an improvement in diagnosis accuracy considering a clinical monitoring of 24 hours or more of the patient.In this book, tests were made with different architectures proposed in the different modules of the proposed model. First, it was possible to obtain the architecture of the fuzzy classifiers for the level of blood pressure and for the pressure load, and these were optimized with the different bio-inspired algorithms (Genetic Algorithm and Chicken Swarm Optimization). Secondly, we tested with a local database of 300 patients and good results were obtained. It is worth mentioning that this book is an important part of the proposed general model; for this reason, we consider that these modules have a good performance in a particular way, but it is advisable to perform more tests once the general model is completed.

Neuro-fuzzy Modeling of Multi-field Surface Neuroprostheses for Hand Grasping (Springer Theses)

by Eukene Imatz Ojanguren

This thesis presents a novel neuro-fuzzy modeling approach for grasp neuroprostheses. At first, it offers a detailed study of discomfort due to the application of Functional Electrical Stimulation to the upper limb. Then, it discusses briefly previous methods to model hand movements induced by FES with the purpose of introducing the new modeling approach based on intelligent systems. This approach is thoroughly described in the book, together with the proposed application to induce hand and finger movements by means of a surface FES system based on multi-field electrodes. The validation tests, carried out on both healthy and neurologically impaired subjects, demonstrate the efficacy of the proposed modeling method. All in all, the book proposes an innovative system based on fuzzy neural networks that is expected to improve the design and validation of advanced control systems for non-invasive grasp neuroprostheses.

Neuro-inspired Computing Using Resistive Synaptic Devices

by Shimeng Yu

This book summarizes the recent breakthroughs in hardware implementation of neuro-inspired computing using resistive synaptic devices. The authors describe how two-terminal solid-state resistive memories can emulate synaptic weights in a neural network. Readers will benefit from state-of-the-art summaries of resistive synaptic devices, from the individual cell characteristics to the large-scale array integration. This book also discusses peripheral neuron circuits design challenges and design strategies. Finally, the authors describe the impact of device non-ideal properties (e.g. noise, variation, yield) and their impact on the learning performance at the system-level, using a device-algorithm co-design methodology.

Neuro-inspired Information Processing

by Alain Cappy

With the end of Moore's law and the emergence of new application needs such as those of the Internet of Things (IoT) or artificial intelligence (AI), neuro-inspired, or neuromorphic, information processing is attracting more and more attention from the scientific community. Its principle is to emulate in a simplified way the formidable machine to process information which is the brain, with neurons and artificial synapses organized in network. These networks can be software – and therefore implemented in the form of a computer program – but also hardware and produced by nanoelectronic circuits. The 'material' path allows very low energy consumption, and the possibility of faithfully reproducing the shape and dynamics of the action potentials of living neurons (biomimetic approach) or even being up to a thousand times faster (high frequency approach). This path is promising and welcomed by the major manufacturers of nanoelectronics, as circuits can now today integrate several million neurons and artificial synapses.

Neuro-ProsthEthics: Ethical Implications of Applied Situated Cognition (Techno:Phil – Aktuelle Herausforderungen der Technikphilosophie #9)

by Jan-Hendrik Heinrichs Birgit Beck Orsolya Friedrich

The volume focusses on the ethical dimensions of the technological scaffold embedding human thought and action, which has been brought to attention of the cognitive sciences by situated cognition theories. There is a broad spectrum of technologies co-realising or enabling and enhancing human cognition and action, which vary in the degree of bodily integration, interactivity, adaptation processes, of reliance and indispensability etc. This technological scaffold of human cognition and action evolves rapidly. Some changes are continuous, some are eruptive. Technologies that use machine learning e.g. could represent a qualitative leap in the technological scaffolding of human cognition and actions. The ethical consequences of applying situated cognition theories to practical cases had yet to find adequate attention and are elucidated in this volume.

Neuro-Rehabilitation with Brain Interface (River Publishers Series In Communications Ser.)

by Leo P. Ligthart Ramjee Prasad Silvano Pupolin

In recent years, major results were reported on Brain-Computer Interface / Brain-Machine Interface (BCI/BMI) applied to rehabilitation in scientific reports and papers. This subject received much attention within the Society on Communication, Navigation, Sensing and Services (CONASENSE) during the period 2013-2015. Describing the state of the art on various BCI/BMI activities related to neuro-rehabilitation is the central theme of this book.The latest insights coming from neurophysiologists, neuropsychologists, ICT experts specialized in clinical data management and from representatives of patient organizations are elucidated and new ways for “BCI/BMI applied to rehabilitation” using advanced ICT are introduced. The book describes the latest progress in and is an appeal for an approach leading to more cost-saving multi-disciplinary neuro-rehabilitation. This book covers the following topics: • Overview on BCI/BMI applied to rehabilitation• ICT for Neuro-rehabilitation• ICT for new generation prostheses• Gaze tracking, facial orientation determination, face and emotion recognition in 3D space for neuro-rehabilitation applications• Integrated perspective for future wide spread integration of motor neuro-rehabilitation• Ethical issues in the use of Information and Communication Technologies in the health care of patients with neurological disorders

Refine Search

Showing 46,976 through 47,000 of 72,964 results