- Table View
- List View
Optimal Control Theory: The Variational Method
by Zhongjing Ma Suli ZouThis book focuses on how to implement optimal control problems via the variational method. It studies how to implement the extrema of functional by applying the variational method and covers the extrema of functional with different boundary conditions, involving multiple functions and with certain constraints etc. It gives the necessary and sufficient condition for the (continuous-time) optimal control solution via the variational method, solves the optimal control problems with different boundary conditions, analyzes the linear quadratic regulator & tracking problems respectively in detail, and provides the solution of optimal control problems with state constraints by applying the Pontryagin’s minimum principle which is developed based upon the calculus of variations. And the developed results are applied to implement several classes of popular optimal control problems and say minimum-time, minimum-fuel and minimum-energy problems and so on. As another key branch of optimal control methods, it also presents how to solve the optimal control problems via dynamic programming and discusses the relationship between the variational method and dynamic programming for comparison. Concerning the system involving individual agents, it is also worth to study how to implement the decentralized solution for the underlying optimal control problems in the framework of differential games. The equilibrium is implemented by applying both Pontryagin’s minimum principle and dynamic programming. The book also analyzes the discrete-time version for all the above materials as well since the discrete-time optimal control problems are very popular in many fields.
Optimal Control Theory: Applications to Management Science and Economics
by Suresh P. SethiThis fully revised 3rd edition offers an introduction to optimal control theory and its diverse applications in management science and economics. It brings to students the concept of the maximum principle in continuous, as well as discrete, time by using dynamic programming and Kuhn-Tucker theory. While some mathematical background is needed, the emphasis of the book is not on mathematical rigor, but on modeling realistic situations faced in business and economics. The book exploits optimal control theory to the functional areas of management including finance, production and marketing and to economics of growth and of natural resources. In addition, this new edition features materials on stochastic Nash and Stackelberg differential games and an adverse selection model in the principal-agent framework. The book provides exercises for each chapter and answers to selected exercises to help deepen the understanding of the material presented. Also included are appendices comprised of supplementary material on the solution of differential equations, the calculus of variations and its relationships to the maximum principle, and special topics including the Kalman filter, certainty equivalence, singular control, a global saddle point theorem, Sethi-Skiba points, and distributed parameter systems.Optimal control methods are used to determine optimal ways to control a dynamic system. The theoretical work in this field serves as a foundation for the book, which the author has applied to business management problems developed from his research and classroom instruction. The new edition has been completely refined and brought up to date. Ultimately this should continue to be a valuable resource for graduate courses on applied optimal control theory, but also for financial and industrial engineers, economists, and operational researchers concerned with the application of dynamic optimization in their fields.
Optimal Control Theory: Applications to Management Science and Economics (Springer Texts in Business and Economics)
by Suresh P. SethiThis new 4th edition offers an introduction to optimal control theory and its diverse applications in management science and economics. It introduces students to the concept of the maximum principle in continuous (as well as discrete) time by combining dynamic programming and Kuhn-Tucker theory. While some mathematical background is needed, the emphasis of the book is not on mathematical rigor, but on modeling realistic situations encountered in business and economics. It applies optimal control theory to the functional areas of management including finance, production and marketing, as well as the economics of growth and of natural resources. In addition, it features material on stochastic Nash and Stackelberg differential games and an adverse selection model in the principal-agent framework. Exercises are included in each chapter, while the answers to selected exercises help deepen readers’ understanding of the material covered. Also included are appendices of supplementary material on the solution of differential equations, the calculus of variations and its ties to the maximum principle, and special topics including the Kalman filter, certainty equivalence, singular control, a global saddle point theorem, Sethi-Skiba points, and distributed parameter systems. Optimal control methods are used to determine optimal ways to control a dynamic system. The theoretical work in this field serves as the foundation for the book, in which the author applies it to business management problems developed from his own research and classroom instruction. The new edition has been refined and updated, making it a valuable resource for graduate courses on applied optimal control theory, but also for financial and industrial engineers, economists, and operational researchers interested in applying dynamic optimization in their fields.
Optimal Control with Aerospace Applications
by James M. Longuski José J. Guzmán John E. PrussingWant to know not just what makes rockets go up but how to do it optimally? Optimal control theory has become such an important field in aerospace engineering that no graduate student or practicing engineer can afford to be without a working knowledge of it. This is the first book that begins from scratch to teach the reader the basic principles of the calculus of variations, develop the necessary conditions step-by-step, and introduce the elementary computational techniques of optimal control. This book, with problems and an online solution manual, provides the graduate-level reader with enough introductory knowledge so that he or she can not only read the literature and study the next level textbook but can also apply the theory to find optimal solutions in practice. No more is needed than the usual background of an undergraduate engineering, science, or mathematics program: namely calculus, differential equations, and numerical integration. Although finding optimal solutions for these problems is a complex process involving the calculus of variations, the authors carefully lay out step-by-step the most important theorems and concepts. Numerous examples are worked to demonstrate how to apply the theories to everything from classical problems (e. g. , crossing a river in minimum time) to engineering problems (e. g. , minimum-fuel launch of a satellite). Throughout the book use is made of the time-optimal launch of a satellite into orbit as an important case study with detailed analysis of two examples: launch from the Moon and launch from Earth. For launching into the field of optimal solutions, look no further!
Optimal Design and Control of Multibody Systems: Proceedings of the IUTAM Symposium (IUTAM Bookseries #42)
by Karin Nachbagauer Alexander HeldThis book presents the proceedings of the IUTAM Symposium on Optimal Design and Control of Multibody Systems 2022, covering research papers in the realm of optimal structural and control design for both rigid and flexible multibody systems. It delves into the application of the adjoint approach, enabling the undertaking of extensive topology optimizations to unearth body designs that excel under time- and design-dependent loads. Encompassing presentations on (adjoint) sensitivity analysis, structural optimization, optimal control, robust optimization, artificial intelligence, machine learning, and computational methods and software development, the IUTAM Symposium 2022 showcased the latest breakthroughs and innovative methodologies. This book presents 14 meticulously peer-reviewed proceedings papers from the event, evenly split between the Optimal Design and Optimal Control panels.
Optimal Design of Control Systems: Stochastic and Deterministic Problems (Pure and Applied Mathematics: A Series of Monographs and Textbooks/221)
by Gennadii E. Kolosov"Covers design methods for optimal (or quasioptimal) control algorithms in the form of synthesis for deterministic and stochastic dynamical systems-with applications in aerospace, robotic, and servomechanical technologies. Providing new results on exact and approximate solutions of optimal control problems."
Optimal Design of Distributed Control and Embedded Systems
by Arben Çela Mongi Ben Gaid Xu-Guang Li Silviu-Iulian NiculescuOptimal Design of Distributed Control and Embedded Systems focuses on the design of special control and scheduling algorithms based on system structural properties as well as on analysis of the influence of induced time-delay on systems performances. It treats the optimal design of distributed and embedded control systems (DCESs) with respect to communication and calculation-resource constraints, quantization aspects, and potential time-delays induced by the associated communication and calculation model. Particular emphasis is put on optimal control signal scheduling based on the system state. In order to render this complex optimization problem feasible in real time, a time decomposition is based on periodicity induced by the static scheduling is operated. The authors present a co-design approach which subsumes the synthesis of the optimal control laws and the generation of an optimal schedule of control signals on real-time networks as well as the execution of control tasks on a single processor. The authors also operate a control structure modification or a control switching based on a thorough analysis of the influence of the induced time-delay system influence on stability and system performance in order to optimize DCES performance in case of calculation and communication resource limitations. Although the richness and variety of classes of DCES preclude a completely comprehensive treatment or a single "best" method of approaching them all, this co-design approach has the best chance of rendering this problem feasible and finding the optimal or some sub-optimal solution. The text is rounded out with references to such applications as car suspension and unmanned vehicles. Optimal Design of Distributed Control and Embedded Systems will be of most interest to academic researchers working on the mathematical theory of DCES but the wide range of environments in which they are used also promotes the relevance of the text for control practitioners working in the avionics, automotive, energy-production, space exploration and many other industries.
Optimal Design of Queueing Systems
by Shaler Stidham Jr.The First Comprehensive Book on the SubjectFocusing on the underlying structure of a system, Optimal Design of Queueing Systems explores how to set the parameters of a queueing system, such as arrival and service rates, before putting it into operation. It considers various objectives, comparing individually optimal (Nash equilibrium), socially opt
Optimal Design of Switching Power Supply
by Zhanyou Sha Xiaojun Wang Yanpeng Wang Hongtao MaA contemporary evaluation of switching power design methods with real world applications• Written by a leading author renowned in his field• Focuses on switching power supply design, manufacture and debugging• Switching power supplies have relevance for contemporary applications including mobile phone chargers, laptops and PCs• Based on the authors' successful "Switching Power Optimized Design 2nd Edition" (in Chinese)• Highly illustrated with design examples of real world applications
Optimal Energie sparen beim Bauen, Sanieren und Wohnen: Ein vergleichbarer Index aller Maßnahmen
by Jürgen EiseltFür Energiesparmaßnahmen im Wohnungsbestand gibt es zahlreiche Möglichkeiten. Doch welche sind wirtschaftlich sinnvoll? Welche Maßnahmen lohnen sich für Eigentümer und gibt es auch Möglichkeiten für Mieter Energie einzusparen? Zu diesen Fragen gibt das Buch Antworten und will Strategien aufzeigen, wie intelligente und wirtschaftliche Einsparlösungen erreicht werden können. Dabei werden Energie für den Heizungsbedarf und der häusliche Stromverbrauch gemeinsam betrachtet. Dadurch unterscheiden sich die im Buch präsentierten Vorschläge von der bisher üblichen Herangehensweise. Energieberater werden neue Anregungen finden und Eigentümer sowie Mieter sehen sich in die Lage versetzt, Energiesparmaßnahmen eigenständig anzugehen und vorgeschlagene Projekte kritisch zu hinterfragen.
Optimal Estimation of Dynamic Systems (Chapman & Hall/CRC Applied Mathematics & Nonlinear Science)
by John L. Crassidis John L. JunkinsAn ideal self-study guide for practicing engineers as well as senior undergraduate and beginning graduate students, this book highlights the importance of both physical and numerical modeling in solving dynamics-based estimation problems found in engineering systems, such as spacecraft attitude determination, GPS navigation, orbit determination, and aircraft tracking. With more than 100 pages of new material, this reorganized and expanded edition incorporates new theoretical results, a new chapter on advanced sequential state estimation, and additional examples and exercises. MATLAB codes are available on the book's website.
Optimal Event-Triggered Control Using Adaptive Dynamic Programming (ISSN)
by Sarangapani Jagannathan Vignesh Narayanan Avimanyu SahooOptimal Event-triggered Control using Adaptive Dynamic Programming discusses event triggered controller design which includes optimal control and event sampling design for linear and nonlinear dynamic systems including networked control systems (NCS) when the system dynamics are both known and uncertain. The NCS are a first step to realize cyber-physical systems (CPS) or industry 4.0 vision. The authors apply several powerful modern control techniques to the design of event-triggered controllers and derive event-trigger condition and demonstrate closed-loop stability. Detailed derivations, rigorous stability proofs, computer simulation examples, and downloadable MATLAB® codes are included for each case.The book begins by providing background on linear and nonlinear systems, NCS, networked imperfections, distributed systems, adaptive dynamic programming and optimal control, stability theory, and optimal adaptive event-triggered controller design in continuous-time and discrete-time for linear, nonlinear and distributed systems. It lays the foundation for reinforcement learning-based optimal adaptive controller use for infinite horizons. The text then: Introduces event triggered control of linear and nonlinear systems, describing the design of adaptive controllers for them Presents neural network-based optimal adaptive control and game theoretic formulation of linear and nonlinear systems enclosed by a communication network Addresses the stochastic optimal control of linear and nonlinear NCS by using neuro dynamic programming Explores optimal adaptive design for nonlinear two-player zero-sum games under communication constraints to solve optimal policy and event trigger condition Treats an event-sampled distributed linear and nonlinear systems to minimize transmission of state and control signals within the feedback loop via the communication network Covers several examples along the way and provides applications of event triggered control of robot manipulators, UAV and distributed joint optimal network scheduling and control design for wireless NCS/CPS in order to realize industry 4.0 vision An ideal textbook for senior undergraduate students, graduate students, university researchers, and practicing engineers, Optimal Event Triggered Control Design using Adaptive Dynamic Programming instills a solid understanding of neural network-based optimal controllers under event-sampling and how to build them so as to attain CPS or Industry 4.0 vision.
Optimal Fractional-order Predictive PI Controllers: For Process Control Applications with Additional Filtering (Studies in Infrastructure and Control)
by Arun Mozhi Panneer Selvam Fawnizu Azmadi Hussin Rosdiazli Ibrahim Kishore Bingi Nagarajapandian M.This book presents the study to design, develop, and implement improved PI control techniques using dead-time compensation, structure enhancements, learning functions and fractional ordering parameters. Two fractional-order PI controllers are proposed and designed: fractional-order predictive PI and hybrid iterative learning based fractional-order predictive PI controller. Furthermore, the proposed fractional-order control strategies and filters are simulated over first- and second-order benchmark process models and further validated using the real-time experimentation of the pilot pressure process plant. In this book, five chapters are structured with a proper sequential flow of details to provide a better understanding for the readers. A general introduction to the controllers, filters and optimization techniques is presented in Chapter 1. Reviews of the PI controllers family and their modifications are shown in the initial part of Chapter 2, followed by the development of the proposed fractional-order predictive PI (FOPPI) controller with dead-time compensation ability. In the first part of chapter 3, a review of the PI based iterative learning controllers, modified structures of the ILC and their modifications are presented. Then, the design of the proposed hybrid iterative learning controller-based fractional-order predictive PI controller based on the current cyclic feedback structure is presented. Lastly, the results and discussion of the proposed controller on benchmark process models and the real-time experimentation of the pilot pressure process plant are given. Chapter 4 presents the development of the proposed filtering techniques and their performance comparison with the conventional methods. Chapter 5 proposes the improvement of the existing sine cosine algorithm (SCA) and arithmetic optimization algorithm (AOA) to form a novel arithmetic-trigonometric optimization algorithm (ATOA) to accelerate the rate of convergence in lesser iterations with mitigation towards getting caught in the same local position. The performance analysis of the optimization algorithm will be carried out on benchmark test functions and the real-time pressure process plant.
Optimal Guidance and Its Applications in Missiles and UAVs (Springer Aerospace Technology)
by Shaoming He Chang-Hun Lee Hyo-Sang Shin Antonios TsourdosThis book presents a comprehensive overview of the recent advances in the domain of optimal guidance, exploring the characteristics of various optimal guidance algorithms and their pros and cons. Optimal guidance is based on the concept of trajectory optimization, which minimizes the meaningful performance index while satisfying certain terminal constraints, and by properly designing the cost function the guidance command can serve as a desired pattern for a variety of mission objectives. The book allows readers to gain a deeper understanding of how optimal guidance law can be utilized to achieve different mission objectives for missiles and UAVs, and also explores the physical meaning and working principle of different new optimal guidance laws. In practice, this information is important in ensuring confidence in the performance and reliability of the guidance law when implementing it in a real-world system, especially in aerospace engineering where reliability is the first priority.
Optimal Illusions: The False Promise of Optimization
by Coco KrummeHow optimization took over the world and the urgent case for a new approach Optimization is the driving principle of our modern world. We now can manufacture, transport, and organize things more cheaply and faster than ever. Optimized models underlie everything from airline schedules to dating site matches. We strive for efficiency in our daily lives, obsessed with productivity and optimal performance. How did a mathematical concept take on such outsize cultural shape? And what is lost when efficiency is gained?Optimal Illusions traces the fascinating history of optimization from its roots in America&’s founding principles to its modern manifestations, found in colorful stories of oil tycoons, wildlife ecologists, Silicon Valley technologists, lifestyle gurus, sugar beet farmers, and poker players. Optimization is now deeply embedded in the technologies and assumptions that have come to comprise not only our material reality but what we make of it.Coco Krumme&’s work in mathematical modeling has made her acutely aware of optimization&’s overreach. Streamlined systems are less resilient and more at risk of failure. They limit our options and narrow our perspectives. The malaise of living in an optimized society can feel profoundly inhumane. Optimal Illusions exposes the sizable bargains we have made in the name of optimization and asks us to consider what comes next.
Optimal Impulsive Control: The Extension Approach (Lecture Notes in Control and Information Sciences #477)
by Fernando Lobo Pereira Dmitry Karamzin Aram ArutyunovOptimal Impulsive Control explores the class of impulsive dynamic optimization problems—problems that stem from the fact that many conventional optimal control problems do not have a solution in the classical setting—which is highly relevant with regard to engineering applications. The absence of a classical solution naturally invokes the so-called extension, or relaxation, of a problem, and leads to the notion of generalized solution which encompasses the notions of generalized control and trajectory; in this book several extensions of optimal control problems are considered within the framework of optimal impulsive control theory. In this framework, the feasible arcs are permitted to have jumps, while the conventional absolutely continuous trajectories may fail to exist. The authors draw together various types of their own results, centered on the necessary conditions of optimality in the form of Pontryagin’s maximum principle and the existence theorems, which shape a substantial body of optimal impulsive control theory. At the same time, they present optimal impulsive control theory in a unified framework, introducing the different paradigmatic problems in increasing order of complexity. The rationale underlying the book involves addressing extensions increasing in complexity from the simplest case provided by linear control systems and ending with the most general case of a totally nonlinear differential control system with state constraints.The mathematical models presented in Optimal Impulsive Control being encountered in various engineering applications, this book will be of interest to both academic researchers and practising engineers.
Optimal Impulsive Control for Cancer Therapy (SpringerBriefs in Electrical and Computer Engineering)
by João P. Belfo João M. LemosThis Springer brief discusses the use of control engineering methods to plan a cancer therapy which tends to reduce tumour size in patients, striking a balance that minimizes the toxic effects of the treatment. The authors address the design and computation of impulsive control therapies, a methodology previously underexplored in the application of control methods to medical modelling. This allows simulation of such discrete events as taking a pill rather than relying on the supply of therapy being continuous and steady.The book begins with an introduction to the topic, before moving onto pharmacokinetic, pharmacodynamical and tumour-growth models and explaining how they describe the relationship between a certain therapy plan and the evolution of cancer. This is placed firmly in the context of work introducing impulsive differential equations. The final chapter summarizes the research presented and suggests future areas of research to encourage readers in taking the subject forward. This book is of interest to biomedical engineers, researchers and students, particularly those with a background in systems and control engineering.
Optimal Inspection Models with Their Applications (Springer Series in Reliability Engineering)
by Kodo Ito Toshio NakagawaThis book surveys recent applications of inspection models, maintenance models and cumulative damage models, as well as discusses the policies involved with these models. It explains how a stochastic approach can be applied to systems using real-world examples.The book begins by introducing and summarizing standard inspection models. It dedicates chapters to random inspection models and general inspection models, before moving on to discuss inspection policies and checkpoint models. The book discusses inspection of reliability systems, such as missile maintenance systems, as well as Markov models of inspection. The book concludes with a summary of other inspection models, problems they face, and solutions to these problems. Each chapter utilizes examples to illustrate the various models, methods, and policies. This book is of interest to engineering students, researchers, and design and production engineers working in system manufacturing.
Optimal Lightweight Construction Principles
by Federico Maria Ballo Massimiliano Gobbi Giampiero Mastinu Giorgio PreviatiThis book presents simple design paradigms related to lightweight design, that are derived from an in-depth and theoretically sound analysis based on Pareto theory. It uses numerous examples, including torsion and inflated tubes, to fully explain the theories discussed. Lightweight Construction Principles begins by defining terms in relation to engineering design and optimal design of complex mechanical systems. It then discusses the analytical derivation of the Pareto-optimal set, before applying analytical formulae to optimal design of bent beams. The book moves through numerous case studies of different beam and tube construction including beams subject to bending, thin walled tubes under torsion and truss structures. This book will be of interest to researchers and graduate students in the field of structural optimisation and multi-objective optimization, as well as to practitioners such as design engineers.
Optimal Localization of Internet of Things Nodes (SpringerBriefs in Applied Sciences and Technology)
by Sheetal N Ghorpade Marco Zennaro Bharat S ChaudhariThis book is a practical resource for designing Internet of Things (IoT) networks and implementing IoT applications from the localization perspective. With the emergence of IoT, machine to machine communication, Industrial IoT, and other societal applications, many applications require knowledge of the exact location of mobile IoT nodes in real-time. As the IoT nodes have computational and energy limitations, it is a crucial research challenge to optimize the network's performance with the highest localization accuracy. Many researchers are working towards such localization problems. However, there is no single book available for the detailed study on IoT node localization. This book provides one-stop multidisciplinary solutions for IoT node localization, design requirements, challenges, constraints, available techniques, comparison, related applications, and future directions. Special features included are theory supported by algorithmic development, treatment of optimization techniques, and applications.
Optimal Measurement Methods for Distributed Parameter System Identification
by Dariusz UcinskiFor dynamic distributed systems modeled by partial differential equations, existing methods of sensor location in parameter estimation experiments are either limited to one-dimensional spatial domains or require large investments in software systems. With the expense of scanning and moving sensors, optimal placement presents a critical problem.
Optimal Mobile Sensing and Actuation Policies in Cyber-physical Systems
by Yangquan Chen Christophe TricaudA successful cyber-physical system, a complex interweaving of hardware and software with some part of the physical environment, depends on proper identification of the, often pre-existing, physical element. A bespoke "cyber" part of the system may then be designed from scratch. Optimal Mobile Sensing and Actuation Strategies in Cyber-physical Systems focuses on distributed-parameter systems the dynamics of which can be modelled with partial differential equations. These are very challenging to observe, their states and inputs being distributed throughout a spatial domain. Consequently, systematic approaches to the optimization of sensor location have to be devised for parameter estimation. The text begins by reviewing the field of cyber-physical systems and introducing background notions of distributed parameter systems and optimal observation theory. New research problems are then defined within this framework. Two important problems considered are optimal mobile sensor trajectory planning and the accuracy effects and allocation of remote sensors. These are followed up with a solution to the problem of optimal robust estimation. Actuation policies are then introduced into the framework with the purpose of improving estimation and optimizing the trajectories of both sensors and actuators simultaneously. The large number of illustrations within the text will assist the reader to visualize the application of the methods proposed. A group of similar examples are used throughout the book to help the reader assimilate the material more easily. The monograph concentrates on the use of methods for which a cyber-physical-systems infrastructure is required. The methods are computationally heavy and require mobile sensors and actuators with communications abilities. Application examples cover fields from environmental science to national security so that readers are encouraged to link the ideas of cyber-physical systems with their own research.
Optimal Modified Continuous Galerkin CFD
by A. J. BakerCovers the theory and applications of using weak form theory in incompressible fluid-thermal sciences Giving you a solid foundation on the Galerkin finite-element method (FEM), this book promotes the use of optimal modified continuous Galerkin weak form theory to generate discrete approximate solutions to incompressible-thermal Navier-Stokes equations. The book covers the topic comprehensively by introducing formulations, theory and implementation of FEM and various flow formulations.The author first introduces concepts, terminology and methodology related to the topic before covering topics including aerodynamics; the Navier-Stokes Equations; vector field theory implementations and large eddy simulation formulations.Introduces and addresses many different flow models (Navier-Stokes, full-potential, potential, compressible/incompressible) from a unified perspectiveFocuses on Galerkin methods for CFD beneficial for engineering graduate students and engineering professionalsAccompanied by a website with sample applications of the algorithms and example problems and solutionsThis approach is useful for graduate students in various engineering fields and as well as professional engineers.
Optimal Navigation in Active Matter (Springer Theses)
by Lorenzo PiroEfficient navigation in terms of travel time and energy dissipation is of crucial importance for biological micro-swimmers. The design of optimally navigating artificial swimmers also has potentially valuable applications such as targeted drug delivery, which has become an increasingly realistic perspective due to the recent progress in the experimental realization of controllable microswimmers able to perform nontrivial tasks. Despite recent theoretical progress, the field still faces open challenges, notably in describing navigation problems that take into account the complexities of the world of microswimmers.This book presents a selection of works on the problem of optimal microswimmer navigation that represent a significant advance in this direction. The material in this book provides important insights into how efficient navigation may be achieved in the presence of curved space geometry, confining forces and flows, as well as thermal fluctuations. Finally, the energetic cost of navigation is addressed via a new formulation of the problem that accounts for the swimmer body geometry.
Optimal Networked Control Systems with MATLAB (Automation and Control Engineering)
by Jagannathan Sarangapani Hao XuOptimal Networked Control Systems with MATLAB® discusses optimal controller design in discrete time for networked control systems (NCS). The authors apply several powerful modern control techniques in discrete time to the design of intelligent controllers for such NCS. Detailed derivations, rigorous stability proofs, computer simulation examples, and downloadable MATLAB® codes are included for each case.The book begins by providing background on NCS, networked imperfections, dynamical systems, stability theory, and stochastic optimal adaptive controllers in discrete time for linear and nonlinear systems. It lays the foundation for reinforcement learning-based optimal adaptive controller use for finite and infinite horizons. The text then: Introduces quantization effects for linear and nonlinear NCS, describing the design of stochastic adaptive controllers for a class of linear and nonlinear systems Presents two-player zero-sum game-theoretic formulation for linear systems in input–output form enclosed by a communication network Addresses the stochastic optimal control of nonlinear NCS by using neuro dynamic programming Explores stochastic optimal design for nonlinear two-player zero-sum games under communication constraints Treats an event-sampled distributed NCS to minimize transmission of state and control signals within the feedback loop via the communication network Covers distributed joint optimal network scheduling and control design for wireless NCS, as well as the effect of network protocols on the wireless NCS controller design An ideal reference for graduate students, university researchers, and practicing engineers, Optimal Networked Control Systems with MATLAB® instills a solid understanding of neural network controllers and how to build them.