Browse Results

Showing 49,501 through 49,525 of 73,470 results

Optical Properties of Advanced Materials

by Shin-Ya Koshihara Yoshinobu Aoyagi Koki Takanashi Kotaro Kajikawa Katsuhiko Fujita Shin-Ichiro Inoue Yoichi Takanishi

In the last decade, optically functionalized materials have developed rapidly, from bulk matters to structured forms. Now we have a rich variety of attractive advanced materials. They are applied to optical and electrical devices that support the information communication technology in the mid 21-th century. Accordingly, it is quite important to have a broad knowledge of the optical properties of advanced materials for students, scientists and engineers working in optics and related fields. This book is designed to teach fundamental optical properties of such advanced materials effectively. These materials have their own peculiarities which are very interesting in modern optical physics and also for applications because the concepts of optical properties are quite different from those in conventional optical materials. Hence each chapter starts to review the basic concepts of the materials briefly and proceeds to the practical use. The important topics covered in this book include: quantum structures of semiconductors, spintronics, photonic crystals, surface plasmons in metallic nanostructures, photonic metamaterials, liquid crystal materials, organic LED materials and magnet-optics.

Optical Properties of Bismuth-Based Topological Insulators

by Paola Pietro

Topological Insulators (TIs) are insulators in the bulk, but have exotic metallic states at their surfaces. The topology, associated with the electronic wavefunctions of these systems, changes when passing from the bulk to the surface. This work studies, by means of infrared spectroscopy, the low energy optical conductivity of Bismuth based TIs in order to identify the extrinsic charge contribution of the bulk and to separate it from the intrinsic contribution of the surface state carriers. The extensive results presented in this thesis definitely shows the 2D character of the carriers in Bismuth-based topological insulators. The experimental apparatus and the FTIR technique, the theory of optical properties and Surface Plasmon Polaritons, as well as sample preparation of both crystals and thin films, and the analysis procedures are thoroughly described.

Optical Properties of Functional Polymers and Nano Engineering Applications (Nanotechnology and Application Series)

by Vaibhav Jain Akshay Kokil

Optical Properties of Functional Polymers and Nano Engineering Applications provides a basic introduction to the optical properties of polymers, as well as a systematic overview of the latest developments in their nano engineering applications. Covering an increasingly important class of materials relevant not only in academic research but also in industry, this comprehensive text: Considers the advantages of the liquid gradient refractive index (L-GRIN) lenses over the conventional solid lenses Explores the electrochemistry of photorefractive polymers, the molecular structure of commonly used polymers, and various 3D holographic displays Discusses gene detection using the optical properties of conjugated polymers Highlights the physics of fluorescence in photoluminescent polymers, and energy and electron transfer mechanisms Introduces conventional polymer ion sensors based on the optical sensors of conjugated polymers prepared by click chemistry reactions Explains colorimetric visual detection of ions by donor–acceptor chromophores Describes optical sensors based on fluorescent polymers and for the detection of explosives and metal ion analytes Addresses holographic polymer-dispersed liquid crystal technology, its optical setups, and its applications in organic lasers Presents cutting-edge research on electrochromic devices, along with new concepts, prototypes, commercial products, and future prospects Demonstrates new techniques for creating nanoscale morphologies through self-assembly, which affect the optical properties of the functional polymers Optical Properties of Functional Polymers and Nano Engineering Applications emphasizes the importance of nano engineering in improving the fundamental optical properties of the functional polymers, elaborating on high-level research while thoroughly explaining the underlying principles.

Optical Properties of Metal Oxide Nanostructures (Progress in Optical Science and Photonics #26)

by Vijay Kumar Irfan Ayoub Vishal Sharma Hendrik C. Swart

This book highlights the optical properties of metal oxides at both the fundamental and applied level and their use in various applications. The book offers a basic understanding of the optical properties and related spectroscopic techniques essential for anyone interested in learning about metal oxide nanostructures. This is partly due to the fact that optical properties are closely associated with other properties and functionalities (e.g., electronic, magnetic, and thermal), which are of essential significance to many technological applications, such as optical data communications, imaging, lighting, and displays, life sciences, health care, security, and safety. The book also highlights the fundamentals and systematic developments in various optical techniques to achieve better characterization, cost-effective, user-friendly approaches, and most importantly, state-of-the-art developing methodologies for various scientific and technological applications. It provides an adequate understanding of the imposed limitations and highlights the prospects and challenges associated with optical analytical methods to achieve the desired performance in targeted applications.

Optical Properties of Metallic Nanoparticles

by Andreas Trügler

This book introduces the fascinating world of plasmonics and physics at the nanoscale, with a focus on simulations and the theoretical aspects of optics and nanotechnology. A research field with numerous applications, plasmonics bridges the gap between the micrometer length scale of light and the secrets of the nanoworld. This is achieved by binding light to charge density oscillations of metallic nanostructures, so-called surface plasmons, which allow electromagnetic radiation to be focussed down to spots as small as a few nanometers. The book is a snapshot of recent and ongoing research and at the same time outlines our present understanding of the optical properties of metallic nanoparticles, ranging from the tunability of plasmonic resonances to the ultrafast dynamics of light-matter interaction. Beginning with a gentle introduction that highlights the basics of plasmonic interactions and plasmon imaging, the author then presents a suitable theoretical framework for the description of metallic nanostructures. This model based on this framework is first solved analytically for simple systems, and subsequently through numerical simulations for more general cases where, for example, surface roughness, nonlinear and nonlocal effects or metamaterials are investigated.

Optical Properties of Nanoparticle Systems: Mie and Beyond

by Michael Quinten

Filling the gap for a description of the optical properties of small particles with sizes less than 1000 nm and to provide a comprehensive overview on the spectral behavior of nanoparticulate matter, this is the most up-to-date reference on the optical physics of nanoparticle systems. The author, an expert in the field with both academic and industrial experience, concentrates on the linear optical properties, elastic light scattering and absorption of single nanoparticles and on reflectance and transmittance of nanoparticle matter.

Optical Properties of Nanostructured Metallic Systems

by Sergio G. Rodrigo

The common belief is that light is completely reflected by metals. In reality they also exhibit an amazing property that is not so widely known: under some conditions light flows along a metallic surface as if it were glued to it. Physical phenomena related to these light waves, which are called Surface Plasmon Polaritons (SPP), have given rise to the research field of plasmonics. This thesis explores four interesting topics within plasmonics: extraordinary optical transmission, negative refractive index metamaterials, plasmonic devices for controlling SPPs, and field enhancement phenomena near metal nanoparticles.

Optical Properties of Photonic Structures: Interplay of Order and Disorder

by Mikhail F. Limonov Richard M. De La Rue

The collection of articles in this book offers a penetrating shaft into the still burgeoning subject of light propagation and localization in photonic crystals and disordered media. While the subject has its origins in physics, it has broad significance and applicability in disciplines such as engineering, chemistry, mathematics, and medicine. Unli

Optical Properties of Solar Absorber Materials and Structures (Topics in Applied Physics #142)

by Liang-Yao Chen

This book presents an overview of both the theory and experimental methods required to realize high efficiency solar absorber devices. It begins with a historical description of the study of spectrally selective solar absorber materials and structures based on optical principles and methods developed over the past few decades. The optical properties of metals and dielectric materials are addressed to provide the background necessary to achieve high performance of the solar absorber devices as applied in the solar energy field. In the following sections, different types of materials and structures, together with the relevant experimental methods, are discussed for practical construction and fabrication of the solar absorber devices, aiming to maximally harvest the solar energy while at the same time effectively suppressing the heat-emission loss. The optical principles and methods used to evaluate the performance of solar absorber devices with broad applications in different physical conditions are presented. The book is suitable for graduate students in applied physics, and provides a valuable reference for researchers working actively in the field of solar energy.

Optical Properties of Wood: Measurement Methods and Result Evaluations (Smart Sensors, Measurement and Instrumentation #45)

by László Tolvaj

This book describes all optical properties of wooden materials, including definitions and measurement methods of optical parameters such as absorbance, diffuse and specular reflectance, colour and gloss. Basic knowledge regarding the reflectance measurement in the ultraviolet, visible, near- and middle infrared radiation ranges is also discussed. It examines conducting correct optical measurements, as well as introduces the validity limits of the individual methods. Steaming as an environmental-friendly colour modification process is introduced by the description of the steaming properties of eight species. Steaming schedules for wood-working industry are suggested to create optimum colour modification. Natural and artificial aspects of photodegradation are monitored by studying the colour change and using infrared reflectance spectrum measurement. The effect of influencing parameters such as temperature, relative air humidity and leaching effect of rain is also discussed. Combined effects of heat and light on the optical properties of wood in all possible combinations are presented. The book helps wood researchers and Ph.D. students perform correct and repeatable optical measurements and evaluations in order to draw the right conclusions.

Optical Remote Sensing

by Jocelyn Chanussot Lori M. Bruce Saurabh Prasad

Optical remote sensing relies on exploiting multispectral and hyper spectral imagery possessing high spatial and spectral resolutions respectively. These modalities, although useful for most remote sensing tasks, often present challenges that must be addressed for their effective exploitation. This book presents current state-of-the-art algorithms that address the following key challenges encountered in representation and analysis of such optical remotely sensed data. Challenges in pre-processing images, storing and representing high dimensional data, fusing different sensor modalities, pattern classification and target recognition, visualization of high dimensional imagery.

Optical Remote Sensing: Science and Technology

by Walter G. Egan

Written by a pioneer in the field, this unique volume is the only one of its kind to explore advanced concepts in the mathematical representation of polarization, descriptors, and various optical elements used in the analysis of polarization in multiple applications. The book highlights tried and proven techniques to enhance aircraft and satellite

Optical Remote Sensing of Ocean Hydrodynamics

by Victor Raizer

Optical Remote Sensing is one of the main technologies used in sea surface monitoring. Optical Remote Sensing of Ocean Hydrodynamics investigates and demonstrates capabilities of optical remote sensing technology for enhanced observations and detection of ocean environments. It provides extensive knowledge of physical principles and capabilities of optical observations of the oceans at high spatial resolution, 1-4m, and on the observations of surface wave hydrodynamic processes. It also describes the implementation of spectral-statistical and fusion algorithms for analyses of multispectral optical databases and establishes physics-based criteria for detection of complex wave phenomena and hydrodynamic disturbances including assessment and management of optical databases. This book explains the physical principles of high-resolution optical imagery of the ocean surface, discusses for the first time the capabilities of observing hydrodynamic processes and events, and emphasizes the integration of optical measurements and enhanced data analysis. It also covers both the assessment and the interpretation of dynamic multispectral optical databases and includes applications for advanced studies and nonacoustic detection. This book is an invaluable resource for researches, industry professionals, engineers, and students working on cross-disciplinary problems in ocean hydrodynamics, optical remote sensing of the ocean and sea surface remote sensing. Readers in the fields of geosciences and remote sensing, applied physics, oceanography, satellite observation technology, and optical engineering will learn the theory and practice of optical interactions with the ocean.

Optical Sensing in Power Transformers (Wiley - IEEE)

by Jun Jiang Guoming Ma

A cutting-edge, advanced level, exploration of optical sensing application in power transformers Optical Sensing in Power Transformers is filled with the critical information and knowledge on the optical techniques applied in power transformers, which are important and expensive components in the electric power system. Effective monitoring of systems has proven to decrease the transformer lifecycle cost and increase a high level of availability and reliability. It is commonly held that optical sensing techniques will play an increasingly significant role in online monitoring of power transformers. In this comprehensive text, the authors—noted experts on the topic—present a scholarly review of the various cutting-edge optical principles and methodologies adopted for online monitoring of power transformers. Grounded in the authors’ extensive research, the book examines optical techniques and high-voltage equipment testing and provides the foundation for further application, prototype, and manufacturing. The book explores the principles, installation, operation, condition detection, monitoring, and fault diagnosis of power transformers. This important text; Provides a current exploration of optical sensing application in power transformers Examines the critical balance and pros and cons of cost and quality of various optical condition monitoring techniques Presents a wide selection of techniques with appropriate technical background Extends the vision of condition monitoring testing and analysis Treats condition monitoring testing and analysis tools together in a coherent framework Written for researchers, technical research and development personnel, manufacturers, and frontline engineers, Optical Sensing in Power Transformers offers an up-to-date review of the most recent developments of optical sensing application in power transformers.

Optical Sensors and Switches

by V. Ramamurthy Kirk S. Schanze

A consideration of the development of photochemical systems with functions as optical sensors or switches, discussing materials and chemical systems, technology, and applications for target molecules and optical signal multiplexing. It contains novel applications in electrogenerated chemiluminescence and supramolecular photophysics for sensing chem

Optical Sensors for Biomedical Diagnostics and Environmental Monitoring

by Banshi Dhar Gupta Anand Mohan Shrivastav Sruthi Prasood Usha

The field of plasmonics has shown extraordinary capabilities in realizing highly sensitive and accurate sensors for environmental monitoring and measurement of biological analytes. The inherent potential of such devices has led to growing interest worldwide in commercial fiber optic chemical and biosensors. Optical Sensors for Biomedical Diagnostics and Environmental Monitoring is an essential resource for students, established researchers, and industry developers in need of a reference work on both the fundamentals and latest advances in optical fiber sensor technology in biomedical diagnostics and environmental monitoring. The book includes rigorous theory and experimental techniques of surface plasmon and lossy mode resonances, as well as real-time sensing applications of resonance techniques implemented over optical fiber substrate using bulk layer and/or nanostructures as transducer and sensing layers. In addition, discussion of various design options for real-time sensors in environmental monitoring and biomedical diagnostics make the book approachable to readers from multidisciplinary fields.

Optical Signal Processing in Highly Nonlinear Fibers

by Mário Fernando Ferreira

This book provides an updated description of the most relevant types of highly nonlinear fibers. It also describes some of their actual applications for nonlinear optical signal processing. Multiple types of highly nonlinear fibers are considered, such as silica-based conventional highly nonlinear fibers, tapered fibers, photonic crystal fibers, and fibers made of highly nonlinear materials, namely lead-silicate, tellurite, bismuth oxide, and chalcogenide glasses. Several nonlinear phenomena occurring on such highly nonlinear fibers are described and used to realize different functions in the area of all-optical signal processing. Describes several nonlinear phenomena occurring on optical fibers, namely nonlinear phase modulation, parametric and stimulated scattering processes, optical solitons, and supercontinuum generation. Discusses different types of highly nonlinear fibers, namely silica-based conventional highly nonlinear fibers, tapered fibers, and photonic crystal fibers. Examines fibers made of highly nonlinear materials, namely lead-silicate, tellurite, bismuth oxide, and chalcogenide glasses. Describes the application of several nonlinear phenomena occurring on highly nonlinear fibers to realize different functions in the area of all-optical signal processing, namely optical amplification, multiwavelength sources, pulse generation, optical regeneration, wavelength conversion, and optical switching. Mário F. S. Ferreira received his PhD degree in 1992 in physics from the University of Aveiro, Portugal, where he is now a professor in the Physics Department. Between 1990 and 1991, he was at the University of Essex, UK, performing experimental work on external cavity semiconductor lasers and nonlinear optical fiber amplifiers. His research interests have been concerned with the modeling and characterization of multisection semiconductor lasers, quantum well lasers, optical fiber amplifiers and lasers, soliton propagation, nanophotonics, optical sensors, polarization, and nonlinear effects in optical fibers. He has written more than 400 scientific journal and conference publications and several books in the area of mathematical physics, optics, and photonics. He has served as chair and committee member of multiple international conferences, as well as guest editor and advisory board member of several international journals.

Optical Soliton Communication Using Ultra-Short Pulses

by Iraj Sadegh Amiri Harith Ahmad

This brief analyzes the characteristics of a microring resonator (MRR) to perform communication using ultra-short soliton pulses. The raising of nonlinear refractive indices, coupling coefficients and radius of the single microring resonator leads to decrease in input power and round trips wherein the bifurcation occurs. As a result, bifurcation or chaos behaviors are seen at lower input power of 44 W, where the nonlinear refractive index is n2=3. 2×10−20 m2/W. Using a decimal convertor system, these ultra-short signals can be converted into quantum information. Results show that multi solitons with FWHM and FSR of 10 pm and 600 pm can be generated respectively. The multi optical soliton with FWHM and FSR of 325 pm and 880 nm can be incorporated with a time division multiple access (TDMA) system wherein the transportation of quantum information is performed.

Optical Spatial Solitons in Photorefractive Materials (Progress in Optical Science and Photonics #14)

by Aavishkar Katti R.A. Yadav

This book highlights recent advances of optical spatial solitons in photorefractive materials ranging broadly from the coupling, modulation instability, effect of pyroelectricity, and the stability of photorefractive solitons, among other topics. Photorefractive solitons have been at the forefront of research because of their formation at low laser powers and unique saturable nonlinearity present in photorefractive materials which supports solitons in (2+1) D. There has been a spurt in research on photorefractive solitons recently, which has contributed to a greater understanding of the theoretical foundation of photorefractive solitons as also of their various interesting and practical applications. The book elucidates the diversity of photorefractive solitons and provides a good resource for students, researchers, and professionals in the area of nonlinear optics. ​

Optical Switching: Device Technology and Applications in Networks

by Dalia Nandi Sandip Nandi Angsuman Sarkar Chandan Kumar Sarkar

OPTICAL SWITCHING Comprehensive coverage of optical switching technologies and their applications in optical networks Optical Switching: Device Technology and Applications in Networks delivers an accessible exploration of the evolution of optical networks with clear explanations of the current state-of-the-art in the field and modern challenges in the development of Internet-of-Things devices. A variety of optical switches—including MEMS-based, magneto, photonic, and SOA-based—are discussed, as is the application of optical switches in networks. The book is written in a tutorial style, easily understood by both undergraduate and graduate students. It describes the fundamentals and recent developments in optical switch networks and examines the architectural and design challenges faced by those who design and construct emerging optical switch networks, as well as how to overcome those challenges. The book offers ways to assess and analyze systems and applications, comparing a variety of approaches available to the reader. It also provides: A thorough introduction to switch characterization, including optical, electro optical, thermo optical, magneto optical, and acoustic-optic switches Comprehensive explorations of MEMS-based, SOA-based, liquid crystal, photonic crystal, and optical electrical optical (OEO) switches Practical discussions of quantum optical switches, as well as nonlinear optical switches In-depth examinations of the application of optical switches in networks, including switch fabric control and optical switching for high-performance computing Perfect for researchers and professionals in the fields of telecommunications, Internet of Things, and optoelectronics, Optical Switching: Device Technology and Applications in Networks will also earn a place in the libraries of advanced undergraduate and graduate students studying optical networks, optical communications, and sensor applications.

Optical Switching in Next Generation Data Centers

by Lorenzo Pavesi Francesco Testa

This book introduces the reader to the optical switching technology for its application to data centers. In addition, it takes a picture of the status of the technology and system architecture evolution and of the research in the area of optical switching in data center. The book is organized in four parts: the first part is focused on the system aspects of optical switching in intra-data center networking, the second part is dedicated to describing the recently demonstrated optical switching networks, the third part deals with the latest technologies developed to enable optical switching and, finally, the fourth part of the book outlines the future prospects and trends.

Optical Techniques for Solid-State Materials Characterization

by Rohit P. Prasankumar Antoinett E J. Taylor

Over the last century, numerous optical techniques have been developed to characterize materials, giving insight into their optical, electronic, magnetic, and structural properties and elucidating such diverse phenomena as high-temperature superconductivity and protein folding. Optical Techniques for Solid-State Materials Characterization provides

Optical Techniques in Regenerative Medicine

by Stephen P. Morgan Felicity R. A. J. Rose Stephen J. Matcher

In regenerative medicine, tissue engineers largely rely on destructive and time-consuming techniques that do not allow in situ and spatial monitoring of tissue growth. Furthermore, once the therapy is implanted in the patient, clinicians are often unable to monitor what is happening in the body. To tackle these barriers, optical techniques have bee

Optical Technologies for Extreme-Ultraviolet and Soft X-ray Coherent Sources

by Federico Canova Luca Poletto

The book reviews the most recent achievements in optical technologies for XUV and X-ray coherent sources. Particular attention is given to free-electron-laser facilities, but also to other sources available at present, such as synchrotrons, high-order laser harmonics and X-ray lasers. The optical technologies relevant to each type of source are discussed. In addition, the main technologies used for photon handling and conditioning, namely multilayer mirrors, adaptive optics, crystals and gratings are explained. Experiments using coherent light received during the last decades a lot of attention for the X-ray regime. Strong efforts were taken for the realization of almost fully coherent sources, e. g. the free-electron lasers, both as independent sources in the femtosecond and attosecond regimes and as seeding sources for free-electron-lasers and X-ray gas lasers. In parallel to the development of sources, optical technologies for photon handling and conditioning of such coherent and intense X-ray beams advanced. New problems were faced for the realization of optical components of beamlines demanding to manage coherent X-ray photons, e. g. the preservation of coherence and time structure of ultra short pulses.

Optical Thin Film Design

by Andrew Sarangan

Thin-film coatings are universal on optical components such as displays, lenses, mirrors, cameras, and windows and serve a variety of functions such as antireflection, high reflection, and spectral filtering. Designs can be as simple as a single-layer dielectric for antireflection effects or very complex with hundreds of layers for producing elaborate spectral filtering effects. Starting from basic principles of electromagnetics, design techniques are progressively introduced toward more intricate optical filter designs, numerical optimization techniques, and production methods, as well as emerging areas such as phase change materials and metal film optics. Worked examples, Python computer codes, and instructor problem sets are included. Key Features: Starting from the basic principles of electromagnetics, topics are built in a pedagogic manner toward intricate filter designs, numerical optimization and production methods. Discusses thin-film applications and design from simple single-layer effects to complex several-hundred-layer spectral filtering. Includes modern topics such as phase change materials and metal film optics. Includes worked examples, problem sets, and numerical examples with Python codes.

Refine Search

Showing 49,501 through 49,525 of 73,470 results