Browse Results

Showing 4,976 through 5,000 of 73,239 results

Analytical Design of PID Controllers

by Iván D. Díaz-Rodríguez Sangjin Han Shankar P. Bhattacharyya

This monograph presents a new analytical approach to the design of proportional-integral-derivative (PID) controllers for linear time-invariant plants. The authors develop a computer-aided procedure, to synthesize PID controllers that satisfy multiple design specifications. A geometric approach, which can be used to determine such designs methodically using 2- and 3-D computer graphics is the result.The text expands on the computation of the complete stabilizing set previously developed by the authors and presented here. This set is then systematically exploited to achieve multiple design specifications simultaneously. These specifications include classical gain and phase margins, time-delay tolerance, settling time and H-infinity norm bounds. The results are developed for continuous- and discrete-time systems. An extension to multivariable systems is also included.Analytical Design of PID Controllers provides a novel method of designing PID controllers, which makes it ideal for both researchers and professionals working in traditional industries as well as those connected with unmanned aerial vehicles, driverless cars and autonomous robots.

Analytical Estimates of Structural Behavior

by Clive L. Dym Harry E. Williams

Explicitly reintroducing the idea of modeling to the analysis of structures, Analytical Estimates of Structural Behavior presents an integrated approach to modeling and estimating the behavior of structures. With the increasing reliance on computer-based approaches in structural analysis, it is becoming even more important for structural engineers

Analytical Evaluation of Nonlinear Distortion Effects on Multicarrier Signals

by Theresa Araújo Rui Dinis

Due to their ability to support reliable high quality of service as well as spectral and power efficiency, multicarrier modulation systems have found increasing use in modern communications services. However, one of the main drawbacks of these systems is their vulnerability to nonlinear distortion effects. Analytical Evaluation of Nonlinear Distort

Analytical Fracture Mechanics (Dover Civil and Mechanical Engineering)

by David J. Unger

"Analytical Fracture Mechanics should prove to be a valuable resource to both the new student and the experienced researcher in fracture mechanics. It is recommended." -- Applied Mechanics ReviewOne of the central concerns of engineering is the failure of materials. Addressing this concern, fracture mechanics -- an interdisciplinary subject spanning mechanical, civil, and materials engineering, applied mathematics, and physics -- predicts the conditions under which such failure will occur due to crack growth. This valuable self-contained text by an expert in the field supplements standard fracture mechanics texts by focusing on analytical methods for determining crack-tip stress and strain fields.Following a comprehensive 120-page introduction -- which provides all the background necessary for understanding the remaining chapters -- the book is organized around a series of elastoplastic and hydrogen-assisted crack-tip problems and their solutions. The first chapter presents the only proven solution technique for the second order nonlinear partial differential equation governing a mode I elastoplastic crack problem. Other chapters deal with plastic zone transitions, environmental cracking, and small-scale yielding versus exact linear elastic solutions.One of the excellent features of this book is the clarity with which groups of problems are presented and related to each other. Another is the careful attention it gives to the various modes of fracture (I, II, and III) and to showing the circumstances under which information from a solution for one mode may be used to infer information in another mode. For this edition, the author has added a new appendix, "Stress Across an Elastoplastic Boundary of a Mode I Crack: Parabolic to Hyperbolic Plasticity Transition."

Analytical Framework for Integrated Water Resources Management: IHE monographs 2

by Paul van Hofwegen Frank G.W. Jaspers

This monograph provides a framework and guidelines for the assessment of institutional frameworks for integrated water resources management (IWRM). The framework and guidelines were developed to enable expert teams of the Inter-American Development Bank to incorporate capacity-building considerations into water-related projects. The framework and guidelines were tested in four countries with different physical, social and economic environments in Latin America and the Caribbean. Using this framework, it is possible to identify shortcomings in existing water management arrangements and to formulate interventions at and between the constitutional, organizational, and operational levels. To guide the formulation of interventions, an ideal IWRM situation is formulated. Due to the temporal and spatial specificity, a desired IWRM situation is formulated in a process which consists of ten operational steps. This process is based on an extensive consultation and participation of all relevant stakeholders. The fields of interventions concern awareness creation, policy development, legal and financial arrangements, human resources development and management information and decision support systems.

Analytical Groundwater Modeling: Theory and Applications using Python

by Mark Bakker Vincent Post

This book provides a detailed description of how Python can be used to give insight into the flow of groundwater based on analytic solutions. Starting with simple problems to illustrate the basic principles, complexity is added step by step to show how one-dimensional and two-dimensional models of one or two aquifers can be implemented. Steady and transient flow problems are discussed in confined, semi-confined, and unconfined aquifers that may include wells, rivers, and areal recharge. Special consideration is given to coastal aquifers, including the effect of tides and the simulation of interface flow. Application of Python allows for compact and readable code, and quick visualization of the solutions. Python scripts are provided to reproduce all results. The scripts are also available online so that they can be altered to meet site-specific conditions. This book is intended both as training material for the next generation of university students and as a useful resource for practitioners. A primer is included for those who are new to Python or as a refresher for existing users.

Analytical Heat Transfer

by Je-Chin Han

Filling the gap between basic undergraduate courses and advanced graduate courses, this text explains how to analyze and solve conduction, convection, and radiation heat transfer problems analytically. It describes many well-known analytical methods and their solutions, such as Bessel functions, separation of variables, similarity method, integral method, and matrix inversion method. Developed from the author's 30 years of teaching, the text also presents step-by-step mathematical formula derivations, analytical solution procedures, and numerous demonstration examples of heat transfer applications.

Analytical Heat Transfer

by Je-Chin Han Lesley M. Wright

Analytical Heat Transfer explains how to analyze and solve conduction, convection, and radiation heat transfer problems. It enables students to tackle complex engineering heat transfer problems prevalent in practice. Covering heat transfer in high-speed flows and unsteady highly turbulent flows, the book also discusses enhanced heat transfer in channels, heat transfer in rotating channels, numerical modeling for turbulent flow heat transfer, and thermally developing heat transfer in a circular tube. The second edition features new content on Duhamel’s superposition method, Green’s function method for transient heat conduction, finite-difference method for steady state and transient heat conduction in cylindrical coordinates, and laminar mixed convection. It includes two new chapters on laminar-to-turbulent transitional heat transfer and turbulent flow heat transfer enhancement, in addition to end-of-chapter problems. The book bridges the gap between basic heat transfer undergraduate courses and advanced heat transfer graduate courses for a single semester of intermediate heat transfer, advanced conduction/radiation heat transfer, or convection heat transfer. Features: Focuses on analyzing and solving classic heat transfer problems in conduction, convection, and radiation Covers 2-D and 3-D view factor evaluation, combined radiation with conduction and/or convection, and gas radiation optically thin and optically thick limits Features updated content and new chapters on mass and heat transfer analogy, thermally developing heat transfer in a circular tube, laminar-turbulent transitional heat transfer, unsteady highly turbulent flows, enhanced heat transfer in channels, heat transfer in rotating channels, and numerical modeling for turbulent flow heat transfer Provides step-by-step mathematical formula derivations, analytical solution procedures, and demonstration examples Includes end-of-chapter problems with an accompanying Solutions Manual for instructors This book is ideal for undergraduate and graduate students studying basic heat transfer and advanced heat transfer.

Analytical Imaging Techniques for Soft Matter Characterization (Engineering Materials)

by Vikas Mittal Nadejda B. Matsko

The book aims to describe the microscopic characterization of the soft matter in the light of new advances acquired in the science of microscopy techniques like AFM; SEM; TEM etc. It does not focus on the traditional information on the microscopy methods as well as systems already present in different books, but intends to answer more fundamental questions associated with commercially important systems by using new advances in microscopy. Such questions are generally not answered by other techniques. The contents of the book also reflect this as the chapters are not based on describing only material systems, but are based on the answering the problems or questions arising in their characterization. Both qualitative as well as quantitative analysis using such microscopic techniques is discussed. Moreover, efforts have been made to provide a broader reach as discussions on both polymers as well as biological matter have been included as different sections. Such a text with comprehensive overview of the various characterization possibilities using microscopy methods can serve as a valuable reference for microscopy experts as well as non-experts alike

Analytical Impedance Spectroscopy: Basics and Applications

by Lakshman Pandey Devendra Kumar Om Parkash Shukdev Pandey

This book introduces the subject of impedance spectroscopy starting from fundamentals through to latest applications in areas such as ceramics, piezoelectric, sensors, agriculture, food quality control, medical diagnostics, cancer research, and so forth. Within the ambit of impedance spectroscopy, plots simulated for useful equivalent circuit models, design of sample holder, necessary precautions to be taken during measurement are described. It further discusses development of softwares for analysis of experimental data and choice of the most appropriate equivalent circuit model. All the materials are supported by problems, answers, appendices and references. Features: Includes fundamentals, equivalent circuit modeling and analysis of data related to impedance spectroscopy. Presents experimental measurements in a nuts-and-bolts approach. Includes derivation of expressions for some selected models and values of immittance functions as frequency of measurements tend to zero and to infinity. Provides clear recipe for beginners for proceeding toward developing equivalent circuit models. Describes computer program for complex nonlinear least squares fitting with example of program IMPSPEC.BAS This book is aimed at senior undergraduate/graduate students and researchers in materials engineering, mechanical engineering, electrical engineering, chemical engineering, biomedical engineering, construction engineering, physics, chemistry, medical diagnostics, agriculture and dairy.

Analytical Instrumentation

by BelaG. Liptak

Analytical Instrumentation examines analyzers for detecting pollutants and other hazardous matter, including carbon monoxide, chlorine, fluoride, hydrogen sulfide, mercury, and phosphorous. Also covers selection, application, and sampling procedures.

Analytical Measurements in Aquatic Environments (Analytical Chemistry)

by Jacek Namieśnik Piotr Szefer

Even a cursory perusal of any analytical journal will demonstrate the increasing important of trace and ultra-trace analysis. And as instrumentation continues to develop, the definition of the term "trace element" will undoubtedly continue to change. Covering the composition and underlying properties of freshwater and marine systems, Analytical Mea

An Analytical Mechanics Framework for Flow-Oscillator Modeling of Vortex-Induced Bluff-Body Oscillations (Solid Mechanics and Its Applications #260)

by Sohrob Mottaghi Rene Gabbai Haym Benaroya

This self-contained book provides an introduction to the flow-oscillator modeling of vortex-induced bluff-body oscillations. One of the great challenges in engineering science also happens to be one of engineering design – the modeling, analysis and design of vibrating structures driven by fluid motion. The literature on fluid–structure interaction is vast, and it can be said to comprise a large fraction of all papers published in the mechanical sciences. This book focuses on the vortex-induced oscillations of an immersed body, since, although the importance of the subject has long been known, it is only during the past fifty years that there have been concerted efforts to analytically model the general behavior of the coupling between vortex shedding and structural oscillations. At the same time, experimentalists have been gathering data on such interactions in order to help define the various regimes of behavior. This data is critical to our understanding and to those who develop analytical models, as can be seen in this book. The fundamental bases for the modeling developed in this book are the variational principles of analytical dynamics, in particular Hamilton’s principle and Jourdain’s principle, considered great intellectual achievements on par with Newton’s laws of motion. Variational principles have been applied in numerous disciplines, including dynamics, optics and quantum mechanics. Here, we apply variational principles to the development of a framework for the modeling of flow-oscillator models of vortex-induced oscillations.

Analytical Methodology of Tree Microstrip Interconnects Modelling For Signal Distribution: Voltage Transfer Function and S-parameter Analyses

by Blaise Ravelo

This book focuses on the modelling methodology of microstrip interconnects, discussing various structures of single-input multiple-output (SIMO) tree interconnects for signal integrity (SI) engineering. Further, it describes lumped and distributed transmission line elements based on single-input single-output (SIMO) models of symmetric and asymmetric trees, and investigates more complicated phenomenon, such as interbranch coupling. The modelling approaches are based on the analytical methods using the Z-, Y- and T-matrices. The established method enables the S-parameters and voltage transfer function of SIMO tree to be determined. Providing illustrative results with frequency and time domain analyses for each tree interconnect structure, the book is a valuable resource for researchers, engineers, and graduate students in fields of analogue, RF/microwave, digital and mixed circuit design, SI and manufacturing engineering.

Analytical Methods and Instruments for Micro- and Nanomaterials (Lecture Notes in Nanoscale Science and Technology #23)

by Henry H. Radamson Anders Hallén Ilya Sychugov Alexander Azarov

This book describes analytical instruments widely used to characterize the nanostructured materials. It provides information about how to assess material quality, defects, the state of surfaces and interfaces, element distributions, strain, lattice distortion, and electro-optical properties of materials and devices. The information provided by this book can be used as a back-up for material processing, material design and debugging of device performance. The basic principles and methodology of each analysis technique is described in separate chapters, adding historic perspectives and recent developments. The data analysis, from simple to advanced level, is introduced by numerous examples, mostly taken from the authors' fields of research; semiconductor materials, metals and oxides. The book serves as a valuable guide for scientists and students working in materials science, physics, and engineering, who wish to become acquainted with the most important analytical techniques for nanomaterials.

Analytical Methods for Food and Dairy Powders

by Anne Dolivet Romain Jeantet Pierre Schuck

Food and dairy powders are created by dehydrating perishable produce, such as milk, eggs, fruit and meat, in order to extend their shelf life and stabilise them for storage or transport. These powders are in high demand for use as ingredients and as food products in their own right, and are of great economic importance to the food and dairy industry worldwide. Today, the ability to control food and dairy powder quality is a source of key competitive advantage. By varying the dehydration process design, and by controlling the technological and thermodynamic parameters during dehydration, it is possible for manufacturers to engineer the biochemical, microbiological and physical characteristics of the food powder to meet their specific product requirements.This book provides an overview of the existing, adapted or new techniques used to analyse safety and quality in modern food and dairy powders. Based on original research by the authors, the book uses 25 commercial dairy and non-dairy powders to illustrate a range of biochemical and physical methods used to evaluate and characterise powdered food products. Written from a practical perspective, each chapter focuses on a particular analytical technique, outlining the purpose, definition and principle of that method. The authors guide the reader through all of the instruments needed, the safety measures required, and the correct procedures to follow to ensure successful analysis. Instructions on accurate measurement and expression of results are included, and each chapter is richly illustrated with original data and worked examples.Analytical Methods for Food and Dairy Powders is a unique step-by-step handbook, which will be required reading for anyone involved in the development and manufacture of powdered food products. Food and dairy scientists based in industry will find it essential for new product development and improved quality control, while researchers in the laboratory will especially value the new techniques it comprises.

Analytical Methods for Polymer Characterization

by Rui Yang

Analytical Methods for Polymer Characterization presents a collection of methods for polymer analysis. Topics include chromatographic methods (gas chromatography, inverse gas chromatography, and pyrolysis gas chromatography), mass spectrometry, spectroscopic methods (ultraviolet-visible spectroscopy, infrared spectroscopy, Raman spectroscopy, and nuclear magnetic resonance), thermal analysis (differential scanning calorimetry and thermogravimetry), microscopy methods (scanning electron microscopy, transmission electron microscopy, and atomic force microscopy), and x-ray diffraction. The author also discusses mechanical and dynamic mechanical properties.

Analytical Methods for Risk Management: A Systems Engineering Perspective (Statistics: A Series of Textbooks and Monographs)

by Paul R. Garvey

A Text on the Foundation Processes, Analytical Principles, and Implementation Practices of Engineering Risk ManagementDrawing from the author's many years of hands-on experience in the field, Analytical Methods for Risk Management: A Systems Engineering Perspectivepresents the foundation processes and analytical practices

Analytical Methods in Applied Mathematics (Problem Books in Mathematics)

by Edmundo Capelas de Oliveira José Emílio Maiorino

This book compiles an extensive list of solved and proposed problems in mathematical topics in analysis, aimed at students of mathematics, applied mathematics, physics, and engineering. The book begins with an exploration of simple linear and nonlinear ordinary differential equations in Chapter 1, advancing through topics such as power series and the Frobenius method for solving differential equations in Chapter 2. In subsequent chapters, the discussion expands to include functions of complex variables, special functions constructed through the hypergeometric function, and series solutions including Fourier, Fourier-Bessel, and Fourier-Legendre series. Problems in integral transforms, Sturm-Liouville systems, Green's function, linear partial differential equations are also included. The work finishes with a special chapter on fractional calculus and practical applications of the topics presented. With solved examples and step-by-step exercises, this book can be of value to undergraduate and graduate students seeking a hands-on approach on the listed topics, and as a bibliographical complement to STEM courses as well.

Analytical Methods In Corrosion Science and Engineering (Corrosion Technology)

by Philippe Marcus Florian Mansfeld

Damage from corrosion costs billions of dollars per year. Controlling corrosion requires a fundamental, in-depth understanding of the mechanisms and phenomena involved, and this understanding is best achieved through advanced analytical methods. The first book to treat both surface analytical and electrochemical techniques in a single reference, An

Analytical Methods in Marine Hydrodynamics

by Ioannis K. Chatjigeorgiou

The value of analytical solutions relies on the rigorous formulation, and a strong mathematical background. This comprehensive volume unifies the most important geometries, which allow for the development of analytical solutions for hydrodynamic boundary value problems. It offers detailed explanations of the Laplance domain and numerical results associated with such problems, providing deep insight into the theory of hydrodynamics. Extended numerical calculations are provided and discussed, allowing the reader to use them as benchmarks for their own computations and making this an invaluable resource for specialists in in various disciplines, including hydrodynamics, acoustics, optics, electrostatics, and brain imaging.

Analytical Methods in Nonlinear Oscillations: Approaches and Applications (Solid Mechanics and Its Applications #252)

by Ebrahim Esmailzadeh Davood Younesian Hassan Askari

This book covers both classical and modern analytical methods in nonlinear systems. A wide range of applications from fundamental research to engineering problems are addressed. The book contains seven chapters, each with miscellaneous problems and their detailed solutions. More than 100 practice problems are illustrated, which might be useful for students and researchers in the areas of nonlinear oscillations and applied mathematics. With providing real world examples, this book shows the multidisciplinary emergence of nonlinear dynamical systems in a wide range of applications including mechanical and electrical oscillators, micro/nano resonators and sensors, and also modelling of global warming, epidemic diseases, sociology, chemical reactions, biology and ecology.

Analytical Methods in Petroleum Upstream Applications

by César Ovalles Carl E. Rechsteiner

Effective measurement of the composition and properties of petroleum is essential for its exploration, production, and refining; however, new technologies and methodologies are not adequately documented in much of the current literature. Analytical Methods in Petroleum Upstream Applications explores advances in the analytical methods and instrument

Analytical Methods in Rotor Dynamics: Second Edition (Mechanisms and Machine Science #9)

by Thomas G. Chondros Stefanos A. Paipetis Andrew D. Dimarogonas

The design and construction of rotating machinery operating at supercritical speeds was, in the 1920s, an event of revolutionary importance for the then new branch of dynamics known as rotor dynamics. In the 1960s, another revolution occurred: In less than a decade, imposed by operational and economic needs, an increase in the power of turbomachinery by one order of magnitude took place. Dynamic analysis of complex rotor forms became a necessity, while the importance of approximate methods for dynamic analysis was stressed. Finally, the emergence of fracture mechanics, as a new branch of applied mechanics, provided analytical tools to investigate crack influence on the dynamic behavior of rotors. The scope of this book is based on all these developments. No topics related to the well-known classical problems are included, rather the book deals exclusively with modern high-power turbomachinery.

Analytical Methods in the Determination of Bioactive Compounds and Elements in Food (Food Bioactive Ingredients)

by Magdalena Jeszka-Skowron Agnieszka Zgoła-Grześkowiak Tomasz Grześkowiak Akula Ramakrishna

Most bioactive compounds have antioxidant activity, particularly tocochromanols, phenolics (flavonoids and phenolic acids), methylxantines and capsaicinoids. Some of these compounds have also other properties important for human health. For example, vitamin E protects against oxidative stress, but it is also known for its “non-antioxidant” functions, including cell signalling and antiproliferation. Selenium compounds and indoleamins are the components of the antioxidant enzymes. Selenium makes vitamin E acquisition easier and controls its physiological functions. In taking part in enzymatic reactions and protecting the cell against free radicals, selenium shows immunomodulative, antiphlogistic, and antiviral activity. Capsaicinoids possess not only antioxidant, but also antibacterial, analgesic, weight-reducing and thermoregulation properties. Studies have also demonstrated their gastroprotective and anticancer properties. Analytical Methods in the Determination of Bioactive Compounds and Elements in Food explores both the influence of particular compounds on human health and the methods used for their determination. Chapters describe various aspects of food and plant analysis, including chromatographic and non‐chromatographic approaches as well as hyphenated techniques. Readers of this book will gain a comprehensive understanding of the important groups of bioactive compounds relevant to human health.

Refine Search

Showing 4,976 through 5,000 of 73,239 results