Browse Results

Showing 50,701 through 50,725 of 72,944 results

Photochemistry for Biomedical Applications: From Device Fabrication to Diagnosis and Therapy

by Yoshihiro Ito

This book describes medical applications of photochemistry. In the first part, a general introduction to photochemistry and related phototechnologies is provided. In the second part, photochemistry-based medical applications for diagnostics (biochips and bioimaging) and therapeutics (biomaterials for artificial organs, medical adhesives, dental materials, drug-delivery systems, tissue engineering, and photodynamic therapy) are described, with examples of recent research. The year 2015 is the International Year of Light and Light-Based Technologies. Light plays a vital role in our daily lives and is important in many interdisciplinary scientific fields in the twenty-first century. Light-based concepts have revolutionized medicine, including areas such as oncology, molecular biology, and surgery. Although photochemistry has contributed significantly to medicine directly and through photochemical fabrication of biomaterials, a book giving a comprehensive overview of recent progress has not been published until now. The aim of this book is to highlight the contributions of photochemistry in interdisciplinary fields of chemistry and medical engineering. This book will be useful for chemists who are interested in medical applications of photochemistry and engineers who are eager to learn the principles of photochemistry to enable its use in practical applications.

Photochromic Materials: Preparation, Properties and Applications

by He Tian Junji Zhang

Summarizing all the latest trends and recent topics in one handy volume, this book covers everything needed for a solid understanding of photochromic materials. Following a general introduction to organic photochromic materials, the authors move on to discuss not only the underlying theory but also the properties of such materials. After a selection of applications, they look at the latest achievements in traditional solution-phase applications, including photochromic-based molecular logic operations and memory, optically modulated supramolecular system and sensors, as well as light-tunable chemical reactions. The book then describes the hot-spot areas of photo-switchable surfaces and nanomaterials, photochromic-based luminescence/electronic devices and bulk materials together with light-regulated biological and bio-chemical systems. The authors conclude with a focus on current industrial applications and the future outlook for these materials. Written with both senior researchers and entrants to the field in mind.

Photoconductivity: Art: Science & Technology (Optical Science And Engineering Ser. #25)

by N. V. Joshi

Featuring detector technology capable of sensing even a few photons, this valuablereference guide provides criteria for selecting techniques and equipment appropriate tovarious types of faint signals. It highlights many important facets of photoconductivityand photodetection, including the measurement of weak photosignals in the presence ofnoise ... statistics relating to the creation, annihilation, and transport of charge carriers... and time-dependent behavior, photoquenching, negative photoconductivity, andphotosensitivity.Complete with more than 125 diagrams and tables, Photoconductivity: Art,Science, and Technology gives special attention to modem two-dimensionalphotodetectors . . . describes various configurations for experimental techniques inphotoconductivity measurements . . . surveys band structure properties, with usefulreference to such contemporary structures as n-i-p-i and modulation doped materials .. .illustrates the concept of noise in photoconductors and its role in detector technology .. .and observes unusual photoconducting properties in diluted magnetic semiconductors.Photoconductivity: Art, Science, and Technology serves as an indispensableresource for optical, electrical, laser, and aerospace engineers, physicists, materialsscientists, photonic scientists, and graduate students interested in these disciplines.

Photoconductivity and Photoconductive Materials: Fundamentals, Techniques and Applications (Wiley Series in Materials for Electronic & Optoelectronic Applications)

by Arthur Willoughby Peter Capper

Explore an authoritative resource with coverage of foundational concepts of photoconductivity and photoconductive materials In Photoconductivity and Photoconductive Materials, Professor Kasap delivers a definitive guide to the basic principles of photoconductivity and a selection of present topical photoconductive materials. Divided into two parts, the set begins with basic concepts and definitions and coverage of characterization using steady state, transient and modulated photoconductivity techniques, including the novel charge extraction by linearly increasing voltage (CELIV) method The physics of terahertz photoconductivity and fundamentals of organic semiconductors lsois are also covered. Part Two of the set starts with a comprehensive review of a wide range of photoconductive materials and then focuses on some of the most important photoconductors, including hydrogenated amorphous silicon, cadmium mercury telluride, various x-ray photoconductors, diamond films, metal halide perovskites, nanowires and quantum dots. Photoconductive antenna application is also included. Filled with contributions from leading authors in the field, this book also offers: A thorough introduction to the characterization of semiconductors from photoconductivity techniques, including uniform illumination and photocarrier grating techniques Comprehensive explorations of organic photoconductors, including photogeneration, transport, and applications in printing Practical discussions of time-of-flight transient photoconductivity, including experimental techniques and interpretation In-depth examinations of transient photoconductivity of organic semiconducting films and novel transient photoconductivity techniques Perfect for research physicists, materials scientists, and electrical engineers, Photoconductivity and Photoconductive Materials is also an indispensable resource for postgraduate and senior undergraduate students working in the area of optoelectronic materials, as well as researchers working in industry.

Photodegradation and Light Stabilization of Heterochain Polymers

by Niyazi Savenkova

Photodegradation and light stabilization are very important aspects of polymer aging. Polymer degradation includes different types of processes: thermodegradation, oxidation, acting of ozone, photodegradation, radiation, hydrolysis, mechanical degradation, and biodegradation. It is very important to know the mechanism of polymer degradation in orde

Photodegradation of Water Pollutants

by Martin M. Halmann

Photodegradation of Water Pollutants, the only complete survey available of current photocatalytic methods for treating water pollutants, covers all aspects of light-stimulated detoxification. Ideal for researchers and students, this new book explains methods for pollution treatment that have proven more effective than conventional biodegradation.Photodegradation of Water Pollutants examines advanced oxidation processes that have been successful in treating the chemical substances produced by industrial effluents and intensive agriculture. These oxidation processes include irradiation with ultraviolet or visible light, the use of homogenous sensitizers, such as dyes, and the use of heterogeneous photocatalysts, such as dispersed semiconductors. In addition, Photodegradation of Water Pollutants addresses the naturally occurring self-cleaning of some pollutants in sunlit surface waters, as well as several alternative non-photochemical approaches to water treatment. Available treatment options are discussed for the main groups of water pollutants, including toxic inorganic ions (cyanides, heavy metals), hydrocarbon derivatives (oil spills, surfactants, pulp and paper wastes), halocarbons, organo-N, organo-P, and organo-S compounds. The text also contains a unique section on the economics of advanced oxidation pollution treatments.

Photodynamic Therapy: Basic Principles and Clinical Applications

by Barbara W. Henderson

Covering all aspects of photodynamic therapy, 70 expert contributors from the fields of photochemistry, photobiology, photophysics, pharmacology, oncology and surgery, provide multidisciplinary discussions on photodynamic therapy - a rapidly-developing approach to the treatment of solid tumours.;Photodynamic Therapy: Basic Principles and Clinical Applications describes the molecular and cellular effects of photodynamic treatment; elucidates the complex events leading to photodynamics tissue destruction, particularly vascular and inflammatory responses; discusses the principles of light penetration through tissues and optical dosimetry; examines photosensitizer pharmacology and delivery systems; reviews in detail photosensitizer structure-activity relationships; illustrates novel devices that aid light dosimetry and fluorescence detection; and extensively delineates clinical applications, including early diagnosis and treatment.;A comprehensive and up-to-date reference, this book should be useful for oncologists, pharmacologists, surgeons, photobiologists, optical engineers, laser technicians, biologists, physicists, chemists and biochemists involved in cancer research, as well as graduate-level students in these disciplines.

Photoelectric Detection on Derived Attributes of Targets

by Xing Yang Yihua Hu

This book highlights the novel photoelectric detection technique on derived attributes of targets. Photoelectric detection on derived attributes of targets is a new target detection and monitoring method. It is achieved by acquiring three types of attributes of the target, including those that reflect the essential features of parts of the target, those directly generated from the target, and those synthesized by the target features. The book introduces the classification of derived attributes of targets and describes typical detection methods. Emphases are put on laser detection of aerial moving targets, using derived attributes such as the disturbance of atmospheric wind fields, trailing vortexes, and the disturbance of atmospheric components. The authors also elaborate on visible light imaging detection using derived attributes such as retroreflection and the identification of target carriers. Besides, the synthetic attributes processing of integrated aerospace images is introduced for the detection of targets on the ground and sea surfaces. This book can be used as a good reference for researchers engaged in the fields of photoelectric detection, target detection and image processing, and as a reference book for senior undergraduates and postgraduates in relevant majors.

Photoelectrochemical Generation of Fuels (Emerging Materials and Technologies)

by Anirban Das

Photoelectrochemical processes due to the symbiosis of photochemical and electrochemical processes result in unique reaction pathways and products. This technique catalysed by nanomaterials is extensively used to harness sunlight for production of fuels and chemical feedstocks. This book explains the basic concepts of photoelectrochemistry as well as their application in the generation of solar fuels from water, CO2 and N2 as feedstocks. It also contains standard methodologies and benchmarks of fuel production including current state of the art in nanocatalysts as well as their mechanism of action. This book: Explores fundamentals and real-time applications of photoelectrochemistry in fuel generation Reviews basic theory and best-known catalysts and best conditions/processes for fuel generation in each of the chapters Covers standard methodologies, processes, and limitations for large-scale applications Focusses on sustainable production of fuels from renewable energy and resources This book aims at graduate students/researchers in chemical, energy and materials engineering.

Photoelectrochemical Hydrogen Generation: Theory, Materials Advances, and Challenges (Materials Horizons: From Nature to Nanomaterials)

by Praveen Kumar Pooja Devi

This book describes the hydrogen fuel generation from water via photoelectrochemical process. It elaborates the theory and fundamental concepts of photoelectrochemistry to understand the photoelectrochemical process for water splitting to generate hydrogen fuel. The book further deliberates about the hydrogen as a futuristic chemical fuel to store solar energy in the form of chemical bonds and also as a renewable alternative to fossil fuels. The book establishes the need for hydrogen fuel and discusses the standards and practices used for solar driven photoelectrochemical water splitting. It also discusses the current and future status of the nanomaterials as efficient photoelectrodes for solar photoelectrochemical water splitting. The book will be of interest to the researchers, students, faculty, scientists, engineers, and technologists working in the domain of material science, energy harvesting, energy conversion, photo electrochemistry, nanomaterials for photo-electrochemical (PEC) cell, etc.

Photoelectrochemical Hydrogen Production

by Roel van de Krol Michael Grätzel

Photoelectrochemical Hydrogen Production describes the principles and materials challenges for the conversion of sunlight into hydrogen through water splitting at a semiconducting electrode. Readers will find an analysis of the solid state properties and materials requirements for semiconducting photo-electrodes, a detailed description of the semiconductor/electrolyte interface, in addition to the photo-electrochemical (PEC) cell. Experimental techniques to investigate both materials and PEC device performance are outlined, followed by an overview of the current state-of-the-art in PEC materials and devices, and combinatorial approaches towards the development of new materials. Finally, the economic and business perspectives of PEC devices are discussed, and promising future directions indicated. Photoelectrochemical Hydrogen Production is a one-stop resource for scientists, students and R&D practitioners starting in this field, providing both the theoretical background as well as useful practical information on photoelectrochemical measurement techniques. Experts in the field benefit from the chapters on current state-of-the-art materials/devices and future directions.

Photoelectrochemical Solar Conversion Systems: Molecular and Electronic Aspects

by Andrés G. Muñoz

Providing new insights into the molecular and electronic processes involved in the conversion of sunlight into chemical products, Photoelectrochemical Solar Conversion Systems: Molecular and Electronic Aspects begins with an historical overview and a survey of recent developments in the electrochemistry of semiconductors and spectroscopic technique

Photoelectrochemical Solar Fuel Production

by Sixto Giménez Juan Bisquert

This book explores the conversion for solar energy into renewable liquid fuels through electrochemical reactions. The first section of the book is devoted to the theoretical fundamentals of solar fuels production, focusing on the surface properties of semiconductor materials in contact with aqueous solutions and the reaction mechanisms. The second section describes a collection of current, relevant characterization techniques, which provide essential information of the band structure of the semiconductors and carrier dynamics at the interface semiconductor. The third, and last section comprises the most recent developments in materials and engineered structures to optimize the performance of solar-to-fuel conversion devices.

Photoelectrochemical Water-splitting: Standards, Experimental Methods, and Protocols

by Huyen Dinh Eric Miller Zhebo Chen

This book outlines many of the techniques involved in materials development and characterization for photoelectrochemical (PEC) - for example, proper metrics for describing material performance, how to assemble testing cells and prepare materials for assessment of their properties, and how to perform the experimental measurements needed to achieve reliable results towards better scientific understanding. For each technique, proper procedure, benefits, limitations, and data interpretation are discussed. Consolidating this information in a short, accessible, and easy to read reference guide will allow researchers to more rapidly immerse themselves into PEC research and also better compare their results against those of other researchers to better advance materials development. This book serves as a "how-to" guide for researchers engaged in or interested in engaging in the field of photoelectrochemical (PEC) water splitting. PEC water splitting is a rapidly growing field of research in which the goal is to develop materials which can absorb the energy from sunlight to drive electrochemical hydrogen production from the splitting of water. The substantial complexity in the scientific understanding and experimental protocols needed to sufficiently pursue accurate and reliable materials development means that a large need exists to consolidate and standardize the most common methods utilized by researchers in this field.

Photoelectron-Ion Correlation in Photoionization of a Hydrogen Molecule and Molecule-Photon Dynamics in a Cavity (Springer Theses)

by Takanori Nishi

This book presents the latest theoretical studies giving new predictions and interpretations on the quantum correlation in molecular dynamics induced by ultrashort laser pulses. The author quantifies the amount of correlation in terms of entanglement by employing methods developed in quantum information science, in particular applied to the photoionization of a hydrogen molecule. It is also revealed that the photoelectron–ion correlation affects the vibrational dynamics of the molecular ion and induces the attosecond-level time delay in the molecular vibration. Furthermore, the book also presents how molecular vibration can couple to photons in a plasmoic nanocavity.Physicists and chemists interested in the ultrafast molecular dynamics would be the most relevant readers. They can learn how we can employ the quantum-information-science tools to understand the correlation in the molecular dynamics and why we should consider the correlation between the photoelectron and the molecular ion to describe the ion’s dynamics. They can also learn how to treat a molecule coupled to photons in a nanocavity. All the topics are related to the state-of-the-art experiments, and so, it is important to publish these results to enhance the understanding and to induce new experiments to confirm the theory presented.

Photoelectron Spectroscopy: Bulk and Surface Electronic Structures

by Akira Sekiyama Shigemasa Suga

Photoelectron spectroscopy is now becoming more and more required to investigate electronic structures of various solid materials in the bulk, on surfaces as well as at buried interfaces. The energy resolution was much improved in the last decade down to 1 meV in the low photon energy region. Now this technique is available from a few eV up to 10 keV by use of lasers, electron cyclotron resonance lamps in addition to synchrotron radiation and X-ray tubes. High resolution angle resolved photoelectron spectroscopy (ARPES) is now widely applied to band mapping of materials. It attracts a wide attention from both fundamental science and material engineering. Studies of the dynamics of excited states are feasible by time of flight spectroscopy with fully utilizing the pulse structures of synchrotron radiation as well as lasers including the free electron lasers (FEL). Spin resolved studies also made dramatic progress by using higher efficiency spin detectors and two dimensional spin detectors. Polarization dependent measurements in the whole photon energy spectrum of the spectra provide useful information on the symmetry of orbitals. The book deals with the fundamental concepts and approaches for the application of this technique to materials studies. Complementary techniques such as inverse photoemission, photoelectron diffraction, photon spectroscopy including infrared and X-ray and scanning tunneling spectroscopy are presented. This book provides not only a wide scope of photoelectron spectroscopy of solids but also extends our understanding of electronic structures beyond photoelectron spectroscopy.

Photoemission from Optoelectronic Materials and their Nanostructures

by Debashis De Kamakhya Prasad Ghatak Sitangshu Bhattacharya

In recent years, with the advent of fine line lithographical methods, molecular beam epitaxy, organometallic vapour phase epitaxy and other experimental techniques, low dimensional structures having quantum confinement in one, two and three dimensions (such as ultrathin films, inversion layers, accumulation layers, quantum well superlattices, quantum well wires, quantum wires superlattices, magneto-size quantizations, and quantum dots) have attracted much attention not only for their potential in uncovering new phenomena in nanoscience and technology, but also for their interesting applications in the areas of quantum effect devices. In ultrathin films, the restriction of the motion of the carriers in the direction normal to the film leads to the quantum size effect and such systems find extensive applications in quantum well lasers, field effect transistors, high speed digital networks and also in other quantum effect devices. In quantum well wires, the carriers are quantized in two transverse directions and only one-dimensional motion of the carriers is allowed.

Photoemission Spectroscopy on High Temperature Superconductor

by Wentao Zhang

This book mainly focuses on the study of the high-temperature superconductor Bi2Sr2CaCu2O8 by vacuum, ultra-violet, laser-based, angle-resolved photoemission spectroscopy (ARPES). A new form of electron coupling has been identified in Bi2212, which occurs in the superconducting state. For the first time, the Bogoliubov quasiparticle dispersion with a clear band back-bending has been observed with two peaks in the momentum distribution curve in the superconducting state at a low temperature. Readers will find useful information about the technique of angle-resolved photoemission and the study of high-temperature superconductors using this technique. Dr. Wentao Zhang received his PhD from the Institute of Physics at the Chinese Academy of Sciences.

Photofunctionalization of Molecular Switch Based on Pyrimidine Ring Rotation in Copper Complexes

by Michihiro Nishikawa

This book provides a detailed description of photofunctionalization of molecular switch based on pyrimidine ring rotational isomerization in copper complexes bearing two bidentate ligands. The most important features of this work focus on the properties associated with the rotational isomerization based on the two possible coordination geometries at the copper center derived from two nitrogen atoms on the unsymmetrically substituted pyrimidine ring. The functions of systems such as dual emission and redox potential switching based on photo-driven rotation will be of particular interest to readers. Both the functions and the procedures for proving these phenomena are beneficial for the development of more functionalized systems based on material science, molecular science, nanoscience, nanotechnology, electrochemistry, photochemistry, coordination chemistry, physical chemistry, and related disciplines. The finding elucidated here holds promise for handling the photoprocesses of metal complexes, valid for both applications and novel properties. This system is expected make it possible to extract an electrochemical potential response from molecular switches, aiming to simulate the five senses of human beings at a single molecular level.

Photogrammetric Survey for the Recording and Documentation of Historic Buildings (Springer Tracts in Civil Engineering)

by Efstratios Stylianidis

This book provides state-of-the-art information on photogrammetry for cultural heritage, exploring the problems and presenting solutions that are applicable under real-world conditions and in various disciplines. Allowing readers to gain a basic understanding of cultural heritage documentation and practical image-based modelling techniques, it focuses on the use of photogrammetry to enhance the documentation of historic buildings in order to reflect the international trends and meet demands of the preservation community. Addressing heritage documentation from various perspectives, the book will appeal students and researchers from engineering backgrounds as well as from the arts and humanities.

Photography and Other Media in the Nineteenth Century

by Simone Natale Nicoletta Leonardi

In this volume, leading scholars of photography and media examine photography’s vital role in the evolution of media and communication in the nineteenth century.In the first half of the nineteenth century, the introduction of telegraphy, the development of a cheaper and more reliable postal service, the rise of the mass-circulation press, and the emergence of the railway dramatically changed the way people communicated and experienced time and space. Concurrently, photography developed as a medium that changed how images were produced and circulated. Yet, for the most part, photography of the era is studied outside the field of media history. The contributors to this volume challenge those established disciplinary boundaries as they programmatically explore the intersections of photography and “new media” during a period of fast-paced change. Their essays look at the emergence and early history of photography in the context of broader changes in the history of communications; the role of the nascent photographic press in photography’s infancy; and the development of photographic techniques as part of a broader media culture that included the mass-consumed novel, sound recording, and cinema.Featuring essays by noteworthy historians in photography and media history, this discipline-shifting examination of the communication revolution of the nineteenth century is an essential addition to the field of media studies.In addition to the editors, contributors to this volume are Geoffrey Batchen, Geoffrey Belknap, Lynn Berger, Jan von Brevern, Anthony Enns, André Gaudreault, Lisa Gitelman, David Henkin, Erkki Huhtamo, Philippe Marion, Peppino Ortoleva, Steffen Siegel, Richard Taws, and Kim Timby.

Photography and Other Media in the Nineteenth Century

by Nicoletta Leonardi and Simone Natale

In this volume, leading scholars of photography and media examine photography’s vital role in the evolution of media and communication in the nineteenth century.In the first half of the nineteenth century, the introduction of telegraphy, the development of a cheaper and more reliable postal service, the rise of the mass-circulation press, and the emergence of the railway dramatically changed the way people communicated and experienced time and space. Concurrently, photography developed as a medium that changed how images were produced and circulated. Yet, for the most part, photography of the era is studied outside the field of media history. The contributors to this volume challenge those established disciplinary boundaries as they programmatically explore the intersections of photography and “new media” during a period of fast-paced change. Their essays look at the emergence and early history of photography in the context of broader changes in the history of communications; the role of the nascent photographic press in photography’s infancy; and the development of photographic techniques as part of a broader media culture that included the mass-consumed novel, sound recording, and cinema.Featuring essays by noteworthy historians in photography and media history, this discipline-shifting examination of the communication revolution of the nineteenth century is an essential addition to the field of media studies.In addition to the editors, contributors to this volume are Geoffrey Batchen, Geoffrey Belknap, Lynn Berger, Jan von Brevern, Anthony Enns, André Gaudreault, Lisa Gitelman, David Henkin, Erkki Huhtamo, Philippe Marion, Peppino Ortoleva, Steffen Siegel, Richard Taws, and Kim Timby.

Photography for Surveyors (Eg Practice Ser.)

by Gareth Evans

Visual images play an integral part in the surveying, development and sale of a property. However, obtaining high quality images can often prove a challenging task. Photography for Surveyors provides even the most amateur photographer with the skills required to produce the highest quality images in the day to day surveying environment. With the increasing importance of the visual portfolio and online presence, this book is an essential guide for all those professionals looking to enhance their skills with a camera, and subsequently raise their professional profile.

Photoinduced Modifications of the Nonlinear Optical Response in Liquid Crystalline Azopolymers

by Raquel Alicante

Nonlinear optical (NLO) phenomena such as frequency conversion have played a key role in the development of photonic technologies. This thesis reports a detailed study of the molecular response of a large variety of push-pull organic compounds using the Second Harmonic Generation technique, which will serve as a starting point for the investigation at the macroscopic scale of azobenzene-based liquid crystalline polymeric films and their blends with highly efficient NLO chromophores. These materials are designed with the aim of exploiting their photoadressability in order to tailor their nonlinear behaviour. The magnitude and symmetry of their NL response was successfully controlled via light irradiation and thermal treatments. Moreover, as a specific application, the recording of efficient NLO gratings was achieved.

Photoinitiators: Structures, Reactivity and Applications in Polymerization

by Jean-Pierre Fouassier Jacques Lalevée

A comprehensive text that covers everything from the processes and mechanisms to the reactions and industrial applications of photoinitiators Photoinitiators offers a wide-ranging overview of existing photoinitiators and photoinitiating systems and their uses in ever-growing green technologies. The authors—noted experts on the topic—provide a concise review of the backgrounds in photopolymerization and photochemistry, explain the available structures, and examine excited state properties, involved mechanisms, and structure, reactivity, and efficiency relationships. The text also contains information on the latest developments and trends in the design of novel tailor-made systems. The book explores the role of current systems in existing and emerging processes and applications. Comprehensive in scope, it covers polymerization of thick samples and in-shadow areas, polymerization under LEDs, NIR light induced thermal polymerization, photoinitiators for novel specific and improved properties, and much more. Written by an experienced and internationally renowned team of authors, this important book: Provides detailed information about excited state processes, mechanisms, and design of efficient photoinitiator systems Discusses the performance of photoinitiators of polymerization by numerous examples of reactions and application Includes information on industrial applications Presents a review of current developments and challenges Offers an introduction to the background information necessary to understand the field Discusses the role played by photoinitiators in a variety of different polymerization reactions Written for polymer chemists, photochemists, and materials scientists, Photoinitiators will also earn a place on the bookshelves of photochemists seeking an authoritative, one-stop guide to the processes, mechanisms, and industrial applications of photoinitiators.

Refine Search

Showing 50,701 through 50,725 of 72,944 results