Browse Results

Showing 50,726 through 50,750 of 72,944 results

Photomechanical Materials, Composites, and Systems: Wireless Transduction of Light into Work

by Timothy J. White

An exhaustive review of the history, current state, and future opportunities for harnessing light to accomplish useful work in materials, this book describes the chemistry, physics, and mechanics of light-controlled systems.• Describes photomechanical materials and mechanisms, along with key applications• Exceptional collection of leading authors, internationally recognized for their work in this growing area• Covers the full scope of photomechanical materials: polymers, crystals, ceramics, and nanocomposites• Deals with an interdisciplinary coupling of mechanics, materials, chemistry, and physics• Emphasizes application opportunities in creating adaptive surface features, shape memory devices, and actuators; while assessing future prospects for utility in optics and photonics and soft robotics

Photomodulated Optical Reflectance

by Janusz Bogdanowicz

One of the critical issues in semiconductor technology is the precise electrical characterization of ultra-shallow junctions. Among the plethora of measurement techniques, the optical reflectance approach developed in this work is the sole concept that does not require physical contact, making it suitable for non-invasive in-line metrology. This work develops extensively all the fundamental physical models of the photomodulated optical reflectance technique and introduces novel approaches that extend its applicability from dose monitoring towards detailed carrier profile reconstruction. It represents a significant breakthrough in junction metrology with potential for industrial implementation.

Photon Absorption Models in Nanostructured Semiconductor Solar Cells and Devices

by Antonio Luque Alexander Virgil Mellor

This book is intended to be used by materials and device physicists and also solar cells researchers. It models the performance characteristics of nanostructured solar cells and resolves the dynamics of transitions between several levels of these devices. An outstanding insight into the physical behaviour of these devices is provided, which complements experimental work. This therefore allows a better understanding of the results, enabling the development of new experiments and optimization of new devices. It is intended to be accessible to researchers, but also to provide engineering tools which are often only accessible to quantum physicists. Photon Absorption Models in Nanostructured Semiconductor Solar Cells and Devices is intended to provide an easy-to-handle means to calculate the light absorption in nanostructures, the final goal being the ability to model operational behaviour of nanostructured solar cells. It allows researchers to design new experiments and improve solar cell performances, and offers a means for the easy approximate calculation of the energy spectrum and photon absorption coefficients of nanostructures. This calculation is based on the effective mass model and uses a new Hamiltonian called the Empirical kp Hamiltonian, which is based on a four band kp model.

Photon Counting Computed Tomography: Clinical Applications, Image Reconstruction and Material Discrimination

by Scott Hsieh Krzysztof Kris Iniewski

This book will provide readers with a good overview of some of most recent advances in the field of Photon Counting CT technology for X-ray medical imaging, especially as it pertains to new detectors. There will be a good mixture of general chapters in both technology and applications in CT medical imaging. The book will have an in-depth review of the research topics from world-leading specialists in the field. The conversion of the X-ray signal into analogue/digital value will be covered in some chapters. The authors also provide a review of CMOS chips for X-ray image sensors, methods of material discrimination and image reconstruction techniques.Covers a broad range of topics, including an introduction to novel spectral Computed Tomography;Includes in-depth analysis on how to optimize X-ray detection;Discusses analysis of electronics for X-ray detection.

Photon Counting Detectors for X-ray Imaging: Physics and Applications

by Hiroaki Hayashi Natsumi Kimoto Takashi Asahara Takumi Asakawa Cheonghae Lee Akitoshi Katsumata

This book first provides readers with an introduction to the underlying physics and state-of-the-art application of photon counting detectors for X-ray imaging. The authors explain that a photon-counting imaging detector can realize quantitative analysis because the detector can derive X-ray attenuation information based on the analysis of intensity changes of individual X-ray. To realize this analysis, it is important to consider the physics of an object and detector material. In this book, the authors introduce a novel analytical procedure to create quantitative X-ray images for medical diagnosis.

Photon Management Assisted by Surface Waves on Photonic Crystals

by Angelo Angelini

This book illustrates original pathways to manipulate light at the nanoscale by means of surface electromagnetic waves (here, Bloch surface waves, BSWs) on planar dielectric multilayers, also known as one-dimensional photonic crystals. This approach is particularly valuable as it represents an effective alternative to the widely exploited surface plasmon paradigm. After a brief overview on the fundamentals of BSWs, several significant applications of BSW-sustaining structures are described. Particular consideration is given to the propagation, guiding, and diffraction of BSW-coupled radiation. Further, the interaction of organic emitters with BSWs on planar and corrugated multilayers is investigated, including fluorescence beaming in free space. To provide greater insight into sensing applications, an illustrative example of fluorescent microarray-based detection is presented. The book is intended for scientists and researchers working on photon management opportunities in fields such as biosensing, optical circuitry, and lighting.

Photon Upconversion Nanomaterials

by Fan Zhang

This book introduces the latest advances made in both fundamental studies and potential applications of upconversion nanomaterials, particularly in the field of high-resolution in vitro bioanalysis and in vivo imaging. This book starts with the synthesis and characterization, and focuses on applications ranging from materials science to biology. Above all, it describes cutting-edge advances in upconversion nanophosphor (UCNP)-based applications in multiplexed encoding, guest delivery and release systems, photodynamic therapy (PDT), solar cells, photocatalysis and so on. The major barriers that currently prevent UCNPs from being used in mainstream applications are also presented in detail.

Photonic Artificial Intelligence (SpringerBriefs in Applied Sciences and Technology)

by Aleksandr Raikov

This book addresses an attempt to create Photonic Artificial Intelligence (PAI) system based on optical technologies, which process signals continuously. PAI could help to overcome digital computer limits and almost zero out the machine learning time and AI inference. It helps to consider feelings, the chaos of thoughts, cognitive activity, and the transcendental states of the human mind in AI systems. The book also discusses new problems such as synthesizing new photonic materials, creating optical control systems, and connecting PAI systems with outside digital computers and holographic memory. The book is aimed at a wide range of readers, including postgraduates and researchers, interested in advanced AI by creating its new paradigm, which can help to overcome traps of traditional AI development.

Photonic Crystal and Its Applications for Next Generation Systems (Springer Tracts in Electrical and Electronics Engineering)

by Shanmuga Sundar Dhanabalan Arun Thirumurugan Ramesh Raju Sathish-Kumar Kamaraj Sridarshini Thirumaran

This book covers the advanced fabrication techniques, challenges, and applications of photonic crystals for next-generation systems in various applications such as high-speed networks, photonic integrated circuits, health care, sensors, energy, and environmental. This book highlights the literature and works put forward by various scientists, researchers, and academicians in photonic crystals and their real-time applications. The content of the book appeals to readers such as students, researchers, and industrial engineers who are working in the design and development of photonics-based concepts, components, and devices for various applications.

Photonic Devices and Systems

by Hunsperger

This work describes all the major devices used in photonic systems. It provides a thorough overview of the field of photonics, detailing practical examples of photonic technology in a wide range of applications. Photonic systems and devices are discussed with a mathematical rigor that is precise enough for design purposes yet highly readable.

The Photonic Hook: From Optics to Acoustics and Plasmonics (SpringerBriefs in Physics)

by Oleg V. Minin Igor V. Minin

This book describes the recently-discovered artificially curved light beam known as the photonic hook. Self-bending of light, a long-time goal of optical scientists, was realized in 2007 with the Airy beam, followed by the first demonstration of the photonic hook by the authors of this book and their collaborators in 2015 and experimentally in 2019. The photonic hook has curvature less than the wavelength, along with other unique features described in this book that are not shared by Airy-like beams, and so deepens our understanding of light propagation. This book discusses the general principles of artificial near-field structured curved light and the full-wave simulations of the photonic hook along with their experimental confirmation. The book goes on to show how the photonic hook has implications for acoustic and surface plasmon waves and as well as applications in nanoparticle manipulation.

Photonic Instrumentation: Sensing and Measuring with Lasers

by Silvano Donati

Photonic Instrumentation: Sensing and Measuring with Lasers is designed as a source for university-level courses covering the essentials of laser-based instrumentation, and as a useful reference for working engineers. Photonic instruments have very desirable features like non-contact operation and unparalleled sensitivity. They have quickly become a big industrial success, passing unaffected through the bubble years and, not any less important, well-established methods in measurement science. This book offers coverage of the most proven instruments, with a balanced treatment of the optical and electronic aspects involved. It also attempts to present the basic principles, develop the guidelines of design and evaluate the ultimate limits of performances set by noise. The instruments surveyed include: alignment instruments, such as wire diameter and particle size analyzers, telemeters, laser interferometers and self-mixing interferometers, and speckle pattern instruments, laser doppler velocimeters, gyroscopes, optical fiber sensors and quantum sensing. A few appendices offer convenient reference material for key principles on lasers, optical interferometers, propagation, scattering and diffraction.

Photonic Integrated Phased Array Technology

by Tao Dong Jingwen He Yue Xu

This book primarily focuses on the authors’ research and practical achievements in the field of photonic integrated phased arrays in recent years. Firstly, a comprehensive introduction on the concept, operation principles, and research progress of photonic integrated phased arrays is introduced. Then, detailed explanations of the optical antenna and array design in photonic integrated phased arrays are given. Combined with design cases of silicon-based optical phased arrays with different scales, the design methods for achieving low sidelobes are deeply researched, and the test principle and design of photonic integrated phased arrays are elaborated. Finally, the design, implementation, and test of photonic integrated phased arrays are illustrated through a detailed case study on the development of a silicon-based optical phased array chip and verify its short-distance space optical communication based on the chip.This book is dedicated to integrating the theory, design, processing, and test cases of photonic integrated phased arrays, and it provides a valuable reference for researchers and designers in the field of optical phased array technology.

Photonic Interconnects for Computing Systems: Understanding and Pushing Design Challenges (River Publishers Series In Optics And Photonics Ser.)

by Gabriela Nicolescu Mahdi Nikdast Sébastien Le Beux

In recent years, there has been a considerable amount of effort, both in industry and academia, focusing on the design, implementation, performance analysis, evaluation and prediction of silicon photonic interconnects for inter- and intra-chip communication, paving the way for the design and dimensioning of the next and future generation of high-performance computing systems. Photonic Interconnects for Computing Systems provides a comprehensive overview of the current state-of-the-art technology and research achievements in employing silicon photonics for interconnection networks and high-performance computing, summarizing main opportunities and some challenges. The majority of the chapters were collected from presentations made at the International Workshop on Optical/Photonic Interconnects for Computing Systems (OPTICS) held over the past two years. The workshop invites internationally recognized speakers on the range of topics relevant to silicon photonics and computing systems. Technical topics discussed in the book include:Design and Implementation of Chip-Scale Photonic Interconnects;Developing Design Automation Solutions for Chip-Scale Photonic Interconnects;Design Space Exploration in Chip-Scale Photonic Interconnects;Thermal Analysis and Modeling in Photonic Interconnects;Design for Reliability;Fabrication Non-Uniformity in Photonic Interconnects;Photonic Interconnects for Computing Systems presents a compilation of outstanding contributions from leading research groups in the field. It presents a comprehensive overview of the design, advantages, challenges, and requirements of photonic interconnects for computing systems. The selected contributions present important discussions and approaches related to the design and development of novel photonic interconnect architectures, as well as various design solutions to improve the performance of such systems while considering different challenges. The book is ideal for personnel in computer/photonic industries as well as academic staff and master/graduate students in computer science and engineering, electronic engineering, electrical engineering and photonics.

Photonic Materials for Sensing, Biosensing and Display Devices (Springer Series in Materials Science #229)

by Michael J. Serpe Youngjong Kang Qiang Matthew Zhang

This book presents the basics and applications of photonic materials. It focuses on the utility of these devices for sensing, biosensing, and displays. The book includes fundamental aspects with a particular focus on the application of photonic materials. The field of photonic materials is both a burgeoning, and mature field. There are new advances being made on a daily basis, all based on the fundamental roots set by work by those like Ozin, Thomas, Asher, and others.

Photonic MEMS Devices: Design, Fabrication and Control

by Ai-Qun Liu

Photonic MEMS devices represent the next major breakthrough in the silicon revolution. While many quality resources exist on the optic and photonic aspect of device physics, today’s researchers are in need of a reference that goes beyond to include all aspects of engineering innovation.An extension on traditional design and analysis, Photonic MEMS Devices: Design, Fabrication, and Control describes a broad range of optical and photonic devices, from MEMS optical switches and bandgap crystal switches to optical variable attenuators (VOA) and injection locked tunable lasers. It deals rigorously with all these technologies at a fundamental level, systematically introducing critical nomenclature. Each chapter also provides analysis techniques, equations, and experimental results. The book focuses not only on traditional design analysis, but also provides extensive background on realistic simulation and fabrication processes. With a clear attention to experimental relevance, this book provides the fundamental knowledge needed to take the next-step in integrating photonic MEMS devices into commercial products and technology.

Photonic Microresonator Research and Applications

by Nikolaos Uzunoglu Otto Schwelb Ioannis Chremmos

The technology surrounding the design and fabrication of optical microresonators has matured to a point where there is a need for commercialization. Consequently, there is a need for device research involving more advanced architectures and more esoteric operating principles. Photonic Microresonator Research and Applications explores advances in the fabrication process that enable nanometer waveguide separations, exceptionally smooth surfaces essential to reach Q factors in the order of 106- 108 and high index contrast materials.

Photonic Network-on-Chip Design

by Aleksandr Biberman Keren Bergman Gilbert Hendry Luca P. Carloni Johnnie Chan

This book provides a comprehensive synthesis of the theory and practice of photonic devices for networks-on-chip. It outlines the issues in designing photonic network-on-chip architectures for future many-core high performance chip multiprocessors. The discussion is built from the bottom up: starting with the design and implementation of key photonic devices and building blocks, reviewing networking and network-on-chip theory and existing research, and finishing with describing various architectures, their characteristics, and the impact they will have on a computing system. After acquainting the reader with all the issues in the design space, the discussion concludes with design automation techniques, supplemented by provided software.

Photonic Packaging Sourcebook

by Ulrich H. P. Fischer-Hirchert

This book serves as a guide on photonic assembly techniques. It provides an overview of today's state-of-the-art technologies for photonic packaging experts and professionals in the field. The text guides the readers to the practical use of optical connectors. It also assists engineers to find a way to an effective and inexpensive set-up for their own needs. In addition, many types of current industrial modules and state-of-the-art applications from single fiber to multi fiber are described in detail. Simulation techniques such as FEM, BPM and ray tracing are explained in depth. Finally, all recent reliability test procedures for datacom and telecom modules are illustrated in combination with related standardization aspects.

Photonic Polymer Systems: Fundamentals: Methods, and Applications (Plastics Engineering)

by Donald L. Wise Gary E. Wnek Debra I. Trantolo Thomas M. Cooper Joseph O. Gresser

"Furnishes the necessary background information, methods of characterization, and applications of optic and photonic systems based on polymers. Provides detailed tutorial chapters that offer in-depth explanations of optic and photonic fundamentals and synthesis techniques."

Photonic Sensing

by Gaozhi Xiao Wojtek J. Bock

A cutting-edge look at safety and security applications of photonic sensorsWith its many superior qualities, photonic sensing technology is increasingly used in early-detection and early-warning systems for biological hazards, structural flaws, and security threats. Photonic Sensing provides for the first time a comprehensive review of this exciting and rapidly evolving field, focusing on the development of cutting-edge applications in diverse areas of safety and security, from biodetection to biometrics.The book brings together contributions from leading experts in the field, fostering effective solutions for the development of specialized materials, novel optical devices, and networking algorithms and platforms. A number of specific areas of safety and security monitoring are covered, including background information, operation principles, analytical techniques, and applications. Topics include:Document security and structural integrity monitoring, as well as the detection of food pathogens and bacteriaSurface plasmon sensors, micro-based cytometry, optofluidic techniques, and optical coherence tomographyOptic fiber sensors for explosive detection and photonic liquid crystal fiber sensors for security monitoringPhotonics-assisted frequency measurement with promising electronic warfare applicationsAn invaluable, multidisciplinary resource for researchers and professionals in photonic sensing, as well as safety and security monitoring, this book will help readers jump-start their own research and development in areas of physics, chemistry, biology, medicine, mechanics, electronics, and defense.

Photonic Signal Processing, Second Edition: Techniques and Applications (Optical Science and Engineering #1)

by Le Nguyen Binh

This Second Edition of "Photonic Signal Processing" updates most recent R&D on processing techniques of signals in photonic domain from the fundamentals given in its first edition. Several modern techniques in Photonic Signal Processing (PSP) are described: Graphical signal flow technique to simplify the analysis of the photonic transfer functions, plus its insights into the physical phenomena of such processors. The resonance and interference of optical fields are presented by the poles and zeros of the optical circuits, respectively. Detailed design procedures for fixed and tunable optical filters. These filters, "brick-wall-like", now play a highly important role in ultra-broadband (100GBaud) to spectral shaping of sinc temporal response so as to generate truly Nyquist sampler of the received eye diagrams 3-D PSP allows multi-dimensional processing for highly complex optical signals Photonic differentiators and integrators for dark soliton generations. Optical dispersion compensating processors for ultra-long haul optical transmission systems. Some optical devices essentials for PSP. Many detailed PSP techniques are given in the chapters of this Second Edition.

Photonic Structures Inspired by Nature

by Mathias Kolle

Unlike most natural colours that are based on pigment absorption, the striking iridescent and intense colouration of many butterflies, birds or beetles stems from the interaction of light with periodic sub-micrometer surface or volume patterns, so called "photonic structures". These "structural colours" are increasingly well understood, but they are difficult to create artificially and exploit technologically. In this thesis the field of natural structural colours and biomimetic photonic structures is covered in a wide scope, ranging from plant photonics to theoretical optics. It demonstrates diffractive elements on the petal surfaces of many flowering plant species; these form the basis for the study of the role of structural colours in pollinator attraction. Self-assembly techniques, combined with scale able nanofabrication methods, were used to create complex artificial photonic structures inspired by those found in nature. In particular, the colour effect of a Papilio butterfly was mimicked and, by variation of its design motive, enhanced. All photonic effects described here are underpinned by state-of-the-art model calculations.

Photonic Waveguide Components on Silicon Substrate: Modeling and Experiments (SpringerBriefs in Applied Sciences and Technology)

by Swagata Samanta Pallab Banerji Pranabendu Ganguly

This book focuses on the design and development of SU-8 polymer and silicon waveguide-based devices using the effective index based matrix method. Various fabrication techniques like laser direct writing (LDW), Focused Ion Beam (FIB) and optical lithography are discussed. FIB lithography has been explored for photonic-crystal structures on the waveguide and for directional coupler in coupled region. This technique is shown to be suitable in fabricating photonic crystal structures as well as for making any precise modifications in micro- and nano-meter photonic waveguide structures. This book can be a useful reference for students, researchers, and fabrication engineers working in the areas of integrated optics, optical communications, laser technology and optical lithography for device manufacturing.

Photonics: Principles and Practices (Optical Science and Engineering #123)

by Abdul Al-Azzawi

<p>Since the invention of the laser, our fascination with the photon has led to one of the most dynamic and rapidly growing fields of technology. An explosion of new materials, devices, and applications makes it more important than ever to stay current with the latest advances. Surveying the field from fundamental concepts to state-of-the-art developments, Photonics: Principles and Practices builds a comprehensive understanding of the theoretical and practical aspects of photonics from the basics of light waves to fiber optics and lasers. Providing self-contained coverage and using a consistent approach, the author leads you step-by-step through each topic. <p>Each skillfully crafted chapter first explores the theoretical concepts of each topic and then demonstrates how these principles apply to real-world applications by guiding you through experimental cases illuminated with numerous illustrations. Coverage is divided into six broad sections, systematically working through light, optics, waves and diffraction, optical fibers, fiber optics testing, and laboratory safety. A complete glossary, useful appendices, and a thorough list of references round out the presentation. <p>The text also includes a 16-page insert containing 28 full-color illustrations. Containing several topics presented for the first time in book form, Photonics: Principles and Practices is simply the most modern, comprehensive, and hands-on text in the field.</p>

Refine Search

Showing 50,726 through 50,750 of 72,944 results