- Table View
- List View
Power Definitions and the Physical Mechanism of Power Flow
by Alexander Eigeles EmanuelProfessor Emanuel uses clear presentation to compare and facilitate understanding of two seminal standards, The IEEE Std. 1459 and The DIN 40110-2:2002-11. Through critical analysis of the most important and recent theories and review of basic concepts, a highly accessible guide to the essence of the standards is presented.Key features:Explains the physical mechanism of energy flow under different conditions: single- and three-phase, sinusoidal and nonsinusoidal, balanced and unbalanced systems Starts at an elementary level and becomes more complex, with six core chapters and six appendices to clarify the mathematical aspects Discusses and recommends power definitions that played a significant historical role in paving the road for the two standards Provides a number of original unsolved problems at the end of each chapter Introduces a new nonactive power; the Randomness power. Power Definitions and the Physical Mechanism of Power Flow is useful for electrical engineers and consultants involved in energy and power quality. It is also helpful to engineers dealing with energy flow quantification, design and manufacturing of metering instrumentation; consultants working with regulations related to renewable energy courses and the smart grid; and electric utility planning and operation engineers dealing with energy bill structure. The text is also relevant to university researchers, professors, and advanced students in power systems, power quality and energy related courses.
Power Distribution Engineering: Fundamentals and Applications (Electrical and Computer Engineering #Vol. 88)
by James J. Burke"Covering virtually all areas of distribution engineering, this complete reference work examines the unique behavior of utilities and provides the practical knowledge necessary to solve real-world distribution problems. "
Power-efficient System Design
by Preeti Ranjan Panda Krishnaiah Gummidipudi B. V. Silpa Aviral ShrivastavaThis book addresses power optimization in modern electronic and computer systems. Several forces aligned in the past decade to drive contemporary computing in the direction of low power and energy-awareness: the mobile revolution took the world by storm; power budgets forced mainstream processor designers to abandon the quest for higher clock frequency; and large data centers with overwhelming power costs began to play vital roles in our daily lives. Power optimization was elevated to a first class design concern, forcing everyone from the process engineer, circuit designer, processor architect, software developer, system builder, and even data center maintainer to make conscious efforts to reduce power consumption using myriad techniques and tools. This book explores power optimization opportunities and their exploitation at various levels of abstraction. Fundamental power optimizations are covered at each level of abstraction, concluding in a case study illustrating the application of the major techniques to a graphics processor. This book covers a comprehensive range of disparate power optimizations and is designed to be accessible to students, researchers, and practitioners alike.
Power Electronic Converters: Interactive Modelling Using Simulink
by Narayanaswamy P IyerProvides a step-by-step method for the development of a virtual interactive power electronics laboratory. The book is suitable for undergraduates and graduates for their laboratory course and projects in power electronics. It is equally suitable for professional engineers in the power electronics industry. The reader will learn to develop interactive virtual power electronics laboratory and perform simulations of their own, as well as any given power electronic converter design using SIMULINK with advanced system model and circuit component level model. <P><P> Features <P><P> Examples and Case Studies included throughout. <P><P> Introductory simulation of power electronic converters is performed using either PSIM or MICROCAP Software. <P><P> Covers interactive system model developed for three phase Diode Clamped Three Level Inverter, Flying Capacitor Three Level Inverter, Five Level Cascaded H-Bridge Inverter, Multicarrier Sine Phase Shift PWM and Multicarrier Sine Level Shift PWM. <P><P> System models of power electronic converters are verified for performance using interactive circuit component level models developed using Simscape-Electrical, Power Systems and Specialized Technology block set. <P><P> Presents software in the loop or Processor in the loop simulation with a power electronic converter examples.
Power Electronic Converters: PWM Strategies and Current Control Techniques (Wiley-iste Ser.)
by Eric MonmassonA voltage converter changes the voltage of an electrical power source and is usually combined with other components to create a power supply. This title is devoted to the control of static converters, which deals with pulse-width modulation (PWM) techniques, and also discusses methods for current control. Various application cases are treated. The book is ideal for professionals in power engineering, power electronics, and electric drives industries, as well as practicing engineers, university professors, postdoctoral fellows, and graduate students.
Power Electronic Converters for Microgrids (Wiley - IEEE)
by Suleiman M. Sharkh Mohammad A. Abu-Sara Georgios I. Orfanoudakis Babar HussainAs concerns about climate change, energy prices, and energy security loom, regulatory and research communities have shown growing interest in alternative energy sources and their integration into distributed energy systems. However, many of the candidate microgeneration and associated storage systems cannot be readily interfaced to the 50/60 Hz grid. In Power Electronic Converters for Microgrids, Sharkh and Abu-Sara introduce the basics and practical concerns of analyzing and designing such micro-generation grid interface systems. Readers will become familiar with methods for stably feeding the larger grid, importing from the grid to charge on-site storage, disconnecting from the grid in case of grid failure, as well as connect multiple microgrids while sharing their loads appropriately. Sharkh and Abu-Sara introduce not only the larger context of the technology, but also present potential future applications, along with detailed case studies and tutorials to help the reader effectively engineer microgrid systems.
Power Electronic Converters Modeling and Control
by Seddik Bacha Iulian Munteanu Antoneta Iuliana BratcuModern power electronic converters are involved in a very broad spectrum of applications: switched-mode power supplies, electrical-machine-motion-control, active power filters, distributed power generation, flexible AC transmission systems, renewable energy conversion systems and vehicular technology, among them. Power Electronics Converters Modeling and Control teaches the reader how to analyze and model the behavior of converters and so to improve their design and control. Dealing with a set of confirmed algorithms specifically developed for use with power converters, this text is in two parts: models and control methods. The first is a detailed exposition of the most usual power converter models: · switched and averaged models; · small/large-signal models; and · time/frequency models. The second focuses on three groups of control methods: · linear control approaches normally associated with power converters; · resonant controllers because of their significance in grid-connected applications; and · nonlinear control methods including feedback linearization, stabilizing, passivity-based, and variable-structure control. Extensive case-study illustration and end-of-chapter exercises reinforce the study material. Power Electronics Converters Modeling and Control addresses the needs of graduate students interested in power electronics, providing a balanced understanding of theoretical ideas coupled with pragmatic tools based on control engineering practice in the field. Academics teaching power electronics will find this an attractive course text and the practical points make the book useful for self tuition by engineers and other practitioners wishing to bring their knowledge up to date.
Power Electronic Modules: Design and Manufacture
by William W. Sheng Ronald P. ColinoDesigning and building power semiconductor modules requires a broad, interdisciplinary base of knowledge and experience, ranging from semiconductor materials and technologies, thermal management, and soldering to environmental constraints, inspection techniques, and statistical process control. This diversity poses a significant challenge to engine
Power Electronic Packaging
by Yong LiuPower Electronic Packaging presents an in-depth overview of power electronic packaging design, assembly,reliability and modeling. Since there is a drastic difference between IC fabrication and power electronic packaging, the book systematically introduces typical power electronic packaging design, assembly, reliability and failure analysis and material selection so readers can clearly understand each task's unique characteristics. Power electronic packaging is one of the fastest growing segments in the power electronic industry, due to the rapid growth of power integrated circuit (IC) fabrication, especially for applications like portable, consumer, home, computing and automotive electronics. This book also covers how advances in both semiconductor content and power advanced package design have helped cause advances in power device capability in recent years. The author extrapolates the most recent trends in the book's areas of focus to highlight where further improvement in materials and techniques can drive continued advancements, particularly in thermal management, usability, efficiency, reliability and overall cost of power semiconductor solutions.
Power Electronic Systems: Walsh Analysis with MATLAB®
by Anish Deb Suchismita GhoshA Totally Different Outlook on Power Electronic System Analysis Power Electronic Systems: Walsh Analysis with MATLAB® builds a case for Walsh analysis as a powerful tool in the study of power electronic systems. It considers the application of Walsh functions in analyzing power electronic systems, and the advantages offered by Walsh domain analysis of power electronic systems. Solves Power Electronic Systems in an Unconventional Way This book successfully integrates power electronics as well as systems and control. Incorporating a complete orthonormal function set very much unlike the sine–cosine functions, it introduces a blending between piecewise constant orthogonal functions and power electronic systems. It explores the background and evolution of power electronics, and discusses Walsh and related orthogonal basis functions. It develops the mathematical foundation of Walsh analysis, and first- and second-order system analyses by Walsh technique. It also describes the Walsh domain operational method and how it is applied to linear system analysis. Introduces Theories Step by Step While presenting the underlying principles of Walsh analysis, the authors incorporate many illustrative examples, and include a basic introduction to linear algebra and MATLAB® programs. They also examine different orthogonal piecewise constant basis functions like Haar, Walsh, slant, block pulse functions, and other related orthogonal functions along with their time scale evolution. • Analyzes pulse–fed single input single output (SISO) first- and second-order systems • Considers stepwise and continuously pulse width modulated chopper systems • Describes a detailed analysis of controlled rectifier circuits • Addresses inverter circuits Power Electronic Systems: Walsh Analysis with MATLAB® is written for postgraduate students, researchers, and academicians in the area of power electronics as well as systems and control.
Power Electronics (Tutorial Guides In Electronic Engineering Ser. #11)
by David Allan BradleySince its inception, the Tutorial Guides in Electronic Engineering series has met with great success among both instructors and students. Designed for first and second year undergraduate courses, each text provides a concise list of objectives at the beginning of each chapter, key definitions and formulas highlighted in margin notes, and references to other texts in the series.This volume introduces the subject of power electronics. Giving relatively little consideration to device physics, the author first discusses the major power electronic devices and their characteristics, then focuses on the systems aspects of power electronics and on the range and diversity of applications. Several case studies, covering topics from high-voltage DC transmission to the development of a controller for domestic appliances, help place the material into a practical context. Each chapter also includes a number of worked examples for reinforcement, which are in turn supported by copious illustrations and end-of-chapter exercises.
Power Electronics
by Branko L. Dokić Branko BlanušaThis book is the result of the extensive experience the authors gained through their year-long occupation at the Faculty of Electrical Engineering at the University of Banja Luka. Starting at the fundamental basics of electrical engineering, the book guides the reader into this field and covers all the relevant types of converters and regulators. Understanding is enhanced by the given examples, exercises and solutions. Thus this book can be used as a textbook for students, for self-study or as a reference book for professionals.
Power Electronics: Advanced Conversion Technologies, Second Edition (Engineering Ser. #1)
by Fang Lin Luo Hong YePower Electronics is a large size technology, mainly covering four categories: the AC/DC rectifiers, DC/DC converters, DC/AC inverters, and AC/AC converters. This book offers approximately 100 novel topologies of all four. The applications are used in sustainable energy generation areas, such as distributed generation (DG), micro-grid (MG), smart grid (SG) systems, and electrical vehicles (EV). With case studies from GE, AEG, Simplatroll Ltd, and Chinese Power Manufacturing Co., the reader will be exposed to practical applications in industry and real-world settings. This new edition features an entirely new chapter on best switching angles to obtain lowest THD for multilevel DC/AC inverters. Additionally, all chapters have been updated and include homework problems throughout.
Power Electronics and Control Techniques for Maximum Energy Harvesting in Photovoltaic Systems (Industrial Electronics #11)
by Giovanni Petrone Giovanni Spagnuolo Nicola Femia Massimo VitelliIncentives provided by European governments have resulted in the rapid growth of the photovoltaic (PV) market. Many PV modules are now commercially available, and there are a number of power electronic systems for processing the electrical power produced by PV systems, especially for grid-connected applications. Filling a gap in the literature, Power Electronics and Control Techniques for Maximum Energy Harvesting in Photovoltaic Systems brings together research on control circuits, systems, and techniques dedicated to the maximization of the electrical power produced by a photovoltaic (PV) source. Tools to Help You Improve the Efficiency of Photovoltaic Systems The book supplies an overview of recent improvements in connecting PV systems to the grid and highlights various solutions that can be used as a starting point for further research and development. It begins with a review of methods for modeling a PV array working in uniform and mismatched conditions. The book then discusses several ways to achieve the best maximum power point tracking (MPPT) performance. A chapter focuses on MPPT efficiency, examining the design of the parameters that affect algorithm performance. The authors also address the maximization of the energy harvested in mismatched conditions, in terms of both power architecture and control algorithms, and discuss the distributed MPPT approach. The final chapter details the design of DC/DC converters, which usually perform the MPPT function, with special emphasis on their energy efficiency. Get Insights from the Experts on How to Effectively Implement MPPT Written by well-known researchers in the field of photovoltaic systems, this book tackles state-of-the-art issues related to how to extract the maximum electrical power from photovoltaic arrays under any weather condition. Featuring a wealth of examples and illustrations, it offers practical guidance for researchers and industry professionals who want to implement MPPT in photovoltaic systems.
Power Electronics and Electric Drives for Traction Applications
by Gonzalo AbadPower Electronics and Electric Drives for Traction Applications offers a practical approach to understanding power electronics applications in transportation systems ranging from railways to electric vehicles and ships. It is an application-oriented book for the design and development of traction systems accompanied by a description of the core technology. The first four introductory chapters describe the common knowledge and background required to understand the preceding chapters. After that, each application-specific chapter: highlights the significant manufacturers involved; provides a historical account of the technological evolution experienced; distinguishes the physics and mechanics; and where possible, analyses a real life example and provides the necessary models and simulationtools, block diagrams and simulation based validations. Key features: Surveys power electronics state-of-the-art in all aspects of traction applications. Presents vital design and development knowledge that is extremely important for the professional community in an original, simple, clear and complete manner. Offers design guidelines for power electronics traction systems in high-speed rail, ships, electric/hybrid vehicles, elevators and more applications. Application-specific chapters co-authored by traction industry expert. Learning supplemented by tutorial sections, case studies and MATLAB/Simulink-based simulations with data from practical systems. A valuable reference for application engineers in traction industry responsible for design and development of products as well as traction industry researchers, developers and graduate students on power electronics and motor drives needing a reference to the application examples.
Power Electronics and Energy Conversion Systems, Fundamentals and Hard-switching Converters
by Adrian IoinoviciPower Electronics and Energy Conversion Systems is a definitive five-volume reference spanning classical theory through practical applications and consolidating the latest advancements in energy conversion technology. Comprehensive yet highly accessible, each volume is organised in a basic-to-sophisticated crescendo, providing a single-source reference for undergraduate and graduate students, researchers and designers.Volume 1 Fundamentals and Hard-switching Converters introduces the key challenges in power electronics from basic components to operation principles and presents classical hard- and soft-switching DC to DC converters, rectifiers and inverters. At a more advanced level, it provides comprehensive analysis of DC and AC models comparing the available approaches for their derivation and results. A full treatment of DC to DC hard-switching converters is given, from fundamentals to modern industrial solutions and practical engineering insight. The author elucidates various contradictions and misunderstandings in the literature, for example, in the treatment of the discontinuous conduction operation or in deriving AC small-signal models of converters.Other key features:* Consolidates the latest advancements in hard-switching converters including discontinuous capacitor voltage mode, and their use in power-factor-correction applications* Includes fully worked design examples, exercises, and case studies, with discussion of the practical consequences of each choice made during the design* Explains all topics in detail with step-by-step derivation of formulas appropriate for energy conversion courses* End-of-section review of the learned material* Includes topics treated in recent journal, conference and industry application coverage on solutions, theory and practical concernsWith emphasis on clear explanation, the text offers both a thorough understanding of DC to DC converters for undergraduate and graduate students in power electronics, and more detailed material suitable for researchers, designers and practising engineers working on the development and design of power electronics. This is an accessible reference for engineering and procurement managers from industries such as consumer electronics, integrated circuits, aerospace and renewable energy.
Power Electronics and High Voltage in Smart Grid: Select Proceedings of SGESC 2021 (Lecture Notes in Electrical Engineering #817)
by Atma Ram Gupta Nirmal Kumar Roy Sanjoy Kumar ParidaThe book contains select proceedings of the International Conference on Smart Grid Energy Systems and Control (SGESC 2021). The proceedings is divided into 03 volumes, and this volume focuses on power electronics, machines, systems integrations, and high voltage engineering. This book is a unique collection of chapters from different areas with a common theme and will be immensely useful to academic researchers and practitioners in the industry.
Power Electronics and Motor Drives
by Richard C. DorfThe Industrial Electronics Handbook, Second Edition combines traditional and newer, more specialized knowledge that will help industrial electronics engineers develop practical solutions for the design and implementation of high-power applications. Embracing the broad technological scope of the field, this collection explores fundamental areas, including analog and digital circuits, electronics, electromagnetic machines, signal processing, and industrial control and communications systems. It also facilitates the use of intelligent systems—such as neural networks, fuzzy systems, and evolutionary methods—in terms of a hierarchical structure that makes factory control and supervision more efficient by addressing the needs of all production components. Enhancing its value, this fully updated collection presents research and global trends as published in the IEEE Transactions on Industrial Electronics Journal, one of the largest and most respected publications in the field. Power Electronics and Motor Drives facilitates a necessary shift from low-power electronics to the high-power varieties used to control electromechanical systems and other industrial applications.This volume of the handbook: Focuses on special high-power semiconductor devices Describes various electrical machines and motors, their principles of operation, and their limitations Covers power conversion and the high-efficiency devices that perform the necessary switchover between AC and DC Explores very specialized electronic circuits for the efficient control of electric motors Details other applications of power electronics, aside from electric motors—including lighting, renewable energy conversion, and automotive electronics Addresses power electronics used in very-high-power electrical systems to transmit energy Other volumes in the set: Fundamentals of Industrial Electronics Control and Mechatronics Industrial Communication Systems Intelligent Systems
Power Electronics and Renewable Energy Systems
by C. Kamalakannan L. Padma Suresh Subhransu Sekhar Dash Bijaya Ketan PanigrahiThe book is a collection of high-quality peer-reviewed research papers presented in the Proceedings of International Conference on Power Electronics and Renewable Energy Systems (ICPERES 2014) held at Rajalakshmi Engineering College, Chennai, India. These research papers provide the latest developments in the broad area of Power Electronics and Renewable Energy. The book discusses wide variety of industrial, engineering and scientific applications of the emerging techniques. It presents invited papers from the inventors/originators of new applications and advanced technologies.
Power Electronics Basics: Operating Principles, Design, Formulas, and Applications
by Yuriy Rozanov Sergey E. Ryvkin Evgeny Chaplygin Pavel VoroninPower Electronics Basics: Operating Principles, Design, Formulas, and Applications provides fundamental knowledge for the analysis and design of modern power electronic devices. This concise and user-friendly resource:Explains the basic concepts and most important terms of power electronicsDescribes the power assemblies, control, and passive compon
Power Electronics, Drives, and Advanced Applications
by Vinod Kumar Ranjan Kumar Behera Dheeraj Joshi Ramesh BansalConcern for reliable power supply and energy-efficient system design has led to usage of power electronics-based systems, including efficient electric power conversion and power semiconductor devices. This book provides integration of complete fundamental theory, design, simulation and application of power electronics, and drives covering up-to-date subject components. It contains twenty-one chapters arranged in four sections on power semiconductor devices, basic power electronic converters, advanced power electronics converters, power supplies, electrical drives and advanced applications. Aimed at senior undergraduate and graduate students in electrical engineering and power electronics including related professionals, this book • Includes electrical drives such as DC motor, AC motor, special motor, high performance motor drives, solar, electrical/hybrid vehicle and fuel cell drives • Reviews advances in renewable energy technologies (wind, PV, hybrid power systems) and their integration • Explores topics like distributed generation, microgrid, and wireless power transfer system • Includes simulation examples using MATLAB®/Simulink and over four hundred solved, unsolved and review problems
Power Electronics-Enabled Autonomous Power Systems: Next Generation Smart Grids (Wiley - IEEE)
by Qing-Chang ZhongPower systems worldwide are going through a paradigm shift from centralized generation to distributed generation. This book presents the SYNDEM (i.e., synchronized and democratized) grid architecture and its technical routes to harmonize the integration of renewable energy sources, electric vehicles, storage systems, and flexible loads, with the synchronization mechanism of synchronous machines, to enable autonomous operation of power systems, and to promote energy freedom. This is a game changer for the grid. It is the sort of breakthrough — like the touch screen in smart phones — that helps to push an industry from one era to the next, as reported by Keith Schneider, a New York Times correspondent since 1982. This book contains an introductory chapter and additional 24 chapters in five parts: Theoretical Framework, First-Generation VSM (virtual synchronous machines), Second-Generation VSM, Third-Generation VSM, and Case Studies. Most of the chapters include experimental results. As the first book of its kind for power electronics-enabled autonomous power systems, it • introduces a holistic architecture applicable to both large and small power systems, including aircraft power systems, ship power systems, microgrids, and supergrids • provides latest research to address the unprecedented challenges faced by power systems and to enhance grid stability, reliability, security, resiliency, and sustainability • demonstrates how future power systems achieve harmonious interaction, prevent local faults from cascading into wide-area blackouts, and operate autonomously with minimized cyber-attacks • highlights the significance of the SYNDEM concept for power systems and beyond Power Electronics-Enabled Autonomous Power Systems is an excellent book for researchers, engineers, and students involved in energy and power systems, electrical and control engineering, and power electronics. The SYNDEM theoretical framework chapter is also suitable for policy makers, legislators, entrepreneurs, commissioners of utility commissions, energy and environmental agency staff, utility personnel, investors, consultants, and attorneys.
Power Electronics, A First Course: Simulations and Laboratory Implementations
by Ned Mohan Siddharth RajuPOWER ELECTRONICS A FIRST COURSE Enables students to understand power electronics systems, as one course, in an integrated electric energy systems curriculum Power Electronics A First Course provides instruction on fundamental concepts related to power electronics to undergraduate electrical engineering students, beginning with an introductory chapter and moving on to discussing topics such as switching power-poles, switch-mode dc-dc converters, and feedback controllers. The authors also cover diode rectifiers, power-factor-correction (PFC) circuits, and switch-mode dc power supplies. Later chapters touch on soft-switching in dc-dc power converters, voltage and current requirements imposed by various power applications, dc and low-frequency sinusoidal ac voltages, thyristor converters, and the utility applications of harnessing energy from renewable sources. Power Electronics A First Course is the only textbook that is integrated with hardware experiments and simulation results. The simulation files are available on a website associated with this textbook. The hardware experiments will be available through a University of Minnesota startup at a low cost. In Power Electronics A First Course, readers can expect to find detailed information on: Availability of various power semiconductor devices that are essential in power electronic systems, plus their switching characteristics and various tradeoffs Common foundational unit of various converters and their operation, plus fundamental concepts for feedback control, illustrated by means of regulated dc-dc converters Basic concepts associated with magnetic circuits, to develop an understanding of inductors and transformers needed in power electronics Problems associated with hard switching, and some of the practical circuits where this problem can be minimized with soft-switching Power Electronics A First Course is an ideal textbook for Junior/Senior-Undergraduate students in Electrical and Computer Engineering (ECE). It is also valuable to students outside of ECE, such as those in more general engineering fields. Basic understanding of electrical engineering concepts and control systems is a prerequisite.
Power Electronics for Electric Vehicles and Energy Storage: Emerging Technologies and Developments
by Dharavath Kishan, Ramani Kannan, B Dastagiri Reddy, and Prajof PrabhakaranThis text will help readers to gain knowledge about designing power electronic converters and their control for electric vehicles. It discusses the ways in which power from electric vehicle batteries is transferred to an electric motor, the technology used for charging electric vehicle batteries, and energy storage. The text covers case studies and real-life examples related to electric vehicles. The book • Discusses the latest advances and developments in the field of electric vehicles • Examines the challenges associated with the integration of renewable energy sources with electric vehicles • Highlights basic understanding of the charging infrastructure for electric vehicles • Covers concepts including the reliability of power converters in electric vehicles, and battery management systems. This book discusses the challenges, emerging technologies, and recent development of power electronics for electric vehicles. It will serve as an ideal reference text for graduate students and academic researchers in the fields of electrical engineering, electronics and communication engineering, environmental engineering, automotive engineering, and computer science.
Power Electronics for Renewable and Distributed Energy Systems
by Marcelo G. Simões Sudipta Chakraborty William E. KramerWhile most books approach power electronics and renewable energy as two separate subjects, Power Electronics for Renewable and Distributed Energy Systems takes an integrative approach; discussing power electronic converters topologies, controls and integration that are specific to the renewable and distributed energy system applications. An overview of power electronic technologies is followed by the introduction of various renewable and distributed energy resources that includes photovoltaics, wind, small hydroelectric, fuel cells, microturbines and variable speed generation. Energy storage systems such as battery and fast response storage systems are discussed along with application-specific examples. After setting forth the fundamentals, the chapters focus on more complex topics such as modular power electronics, microgrids and smart grids for integrating renewable and distributed energy. Emerging topics such as advanced electric vehicles and distributed control paradigm for power system control are discussed in the last two chapters. With contributions from subject matter experts, the diagrams and detailed examples provided in each chapter make Power Electronics for Renewable and Distributed Energy Systems a sourcebook for electrical engineers and consultants working to deploy various renewable and distributed energy systems and can serve as a comprehensive guide for the upper-level undergraduates and graduate students across the globe.