- Table View
- List View
Surface Science and Adhesion in Cosmetics
by K. L. Mittal H. S. BuiActivity in the arena of surface chemistry and adhesion aspects in cosmetics is substantial, but the information is scattered in many diverse publications media and no book exists which discusses surface chemistry and adhesion in cosmetics in unified manner. This book containing 15 chapters written by eminent researchers from academia and industry is divided into three parts: Part 1: General Topics; Part 2:Surface Chemistry Aspects; and Part 3: Wetting and Adhesion Aspects. The topics covered include: Lip biophysical properties and characterization; use of advanced silicone materials in long-lasting cosmetics; non-aqueous dispersions of acrylate copolymers in lipsticks; cosmetic oils in Lipstick structure; chemical structure of the hair surface, surface forces and interactions; AFM for hair surface characterization; application of AFM in characterizing hair, skin and cosmetic deposition; SIMS as a surface analysis method for hair, skin and cosmetics; surface tensiometry approach to characterize cosmetic products; spreading of hairsprays on hair; color transfer from long-wear face foundation products; interaction of polyelectrolytes and surfactants on hair surfaces; cosmetic adhesion to facial skin; and adhesion aspects in semi-permanent mascara; lipstick adhesion measurement.
Surface Science of Intercalation Materials and Solid Electrolytes: A View on Electron and Ion Transfer at Li-ion Electrodes Based on Energy Level Concepts (SpringerBriefs in Physics)
by René HausbrandThis book shares essential insights into the formation and properties of ionic interfaces based on the energy level structures of their interfaces obtained using a surface science approach. It covers both interfaces with liquid and solid electrolyte contacts, and includes different material classes, such as oxides and phosphates. The specific material properties result in particular effects observed at interfaces, which are often not yet, or not sufficiently, taken into account in battery development and technologies.Discussing fundamental issues concerning the properties of intercalation electrodes and electrode–solid electrolyte interfaces, the book investigates the factors that determine voltage, kinetics and reactivity. It presents experimental results on interface formation, and relates them to electron and ion energy levels in the materials and at their interfaces. It explores these topics integrating electrochemistry, solid-state ionics and semiconductor physics, and accordingly will appeal not only to battery scientists, but also to a broader scientific community, including material scientists and electrochemists.
Surface Science: Foundations of Catalysis and Nanoscience
by Kurt W. KolasinskiAn updated fourth edition of the text that provides an understanding of chemical transformations and the formation of structures at surfaces The revised and enhanced fourth edition of Surface Science covers all the essential techniques and phenomena that are relevant to the field. The text elucidates the structural, dynamical, thermodynamic and kinetic principles concentrating on gas/solid and liquid/solid interfaces. These principles allow for an understanding of how and why chemical transformations occur at surfaces. The author (a noted expert on in the field) combines the required chemistry, physics and mathematics to create a text that is accessible and comprehensive. The fourth edition incorporates new end-of-chapter exercises, the solutions to which are available on-line to demonstrate how problem solving that is relevant to surface science should be performed. Each chapter begins with simple principles and builds to more advanced ones. The advanced topics provide material beyond the introductory level and highlight some frontier areas of study. This updated new edition: Contains an expanded treatment of STM and AFM as well as super-resolution microscopy Reviews advances in the theoretical basis of catalysis and the use of activity descriptors for rational catalyst design Extends the discussion of two-dimensional solids to reflect remarkable advances in their growth and characterization Delves deeper into the surface science of electrochemistry and charge transfer reactions Updates the “Frontiers and Challenges” sections at the end of each chapter as well as the list of references Written for students, researchers and professionals, the fourth edition of Surface Science offers a revitalized text that contains the tools and a set of principles for understanding the field.
Surface Structure Modification and Hardening of Al-Si Alloys
by Denis A. Romanov Stanislav. V. Moskovskii Viktor E. GromovSurface Structure Modification and Hardening of Al-SI Alloys explores the hardening of material surfaces using concentrated energy flows resulting in the nanostructuring of surface layers. The authors demonstrate how these methods achieve a reduction in plastic deformation of the surface and a more uniform distribution of elastic stresses near the surface during operational use, significantly reducing part failure. It presents results from research and scientific and technological enterprises involved with the modification of light alloy surfaces for use in the automobile and aerospace industries. Additional key features include: Addresses theoretical and experimental research computer simulations of structural phase transformations at the nanolevel to create new materials Details and compares electroexplosion alloying, electron beam processing and electron-plasma alloying of an Al-Si Alloy Explains multiphase plasma jet treatment to obtain high-quality coatings with good and high functional properties This reference is a valuable resource for specialists in the field of physical material science, condensed state physics, metal science and thermal treatment and will be of interest to undergraduate and post-graduate students in these fields.
Surface Tension and Related Thermodynamic Quantities of Aqueous Electrolyte Solutions
by Norihiro MatubayasiSurface tension provides a thermodynamic avenue for analyzing systems in equilibrium and formulating phenomenological explanations for the behavior of constituent molecules in the surface region. While there are extensive experimental observations and established ideas regarding desorption of ions from the surfaces of aqueous salt solutions, a more
Surface Tension in Microsystems: Engineering Below the Capillary Length
by Pierre LambertThis book describes how surface tension effects can be used by engineers to provide mechanical functions in miniaturized products (<1 mm). Even if precursors of this field such as Jurin or Laplace already date back to the 18th century, describing surface tension effects from a mechanical perspective is very recent. The originality of this book is to consider the effects of capillary bridges on solids, including forces and torques exerted both statically and dynamically by the liquid along the 6 degrees-of-freedom. It provides a comprehensive approach to various applications, such as capillary adhesion (axial force), centering force in packaging and micro-assembly (lateral force) and recent developments such as a capillary motor (torque). It devises how surface tension can be used to provide mechanical functions such as actuation (bubble-actuated compliant table), sealing and tightness, energy harvesting, nanodispending.
Surface Treatments for Biological, Chemical and Physical Applications
by Mehmet Gürsoy Mustafa KaramanA step-by-step guide to the topic with a mix of theory and practice in the fields of biology, chemistry and physics. Straightforward and well-structured, the first chapter introduces fundamental aspects of surface treatments, after which examples from nature are given. Subsequent chapters discuss various methods to surface modification, including chemical and physical approaches, followed by the characterization of the functionalized surfaces. Applications discussed include the lotus effect, diffusion barriers, enzyme immobilization and catalysis. Finally, the book concludes with a look at future technology advances. Throughout the text, tutorials and case studies are used for training purposes to grant a deeper understanding of the topic, resulting in an essential reference for students as well as for experienced engineers in R&D.
Surface Wave Methods for Near-Surface Site Characterization
by Sebastiano Foti Carlo Lai Glenn J. Rix Claudio StrobbiaDevelop a Greater Understanding of How and Why Surface Wave Testing WorksUsing examples and case studies directly drawn from the authors' experience, Surface Wave Methods for Near-Surface Site Characterization addresses both the experimental and theoretical aspects of surface wave propagation in both forward and inverse modeling. This book accents
Surface Well Testing: A Practical Guide
by Paul Budworth Abdullah TaniraWith easy oil extraction becoming a thing of the past, new technologies and processes of discovery have been introduced into the exploration of oil and gas. These advancements rely on precise and accurate data, in many cases live during operations. Surface well testing operations acquire the necessary data during exploration, production, and development, and clean data is essential and heavily relied upon. Surface Well Testing: A Practical Guide guides readers on the fundamentals and techniques of surface well testing operations and data acquisition to ensure proper operational procedures and standards. Explains actual operations, equipment, and data acquisition and quality Introduces readers to the processes and techniques of surface well testing, the required measurements and readings, and how to get the right data to perform accurate reservoir and petroleum engineering calculations Bridges the gap between practical field operations and simulated engineering and mathematical models This book supports readers and organisations in the oil and gas industry as an operations reference and training manual to ensure standardisation of operating procedures and accuracy of results.
Surface Wetting
by Kock-Yee Law Hong ZhaoThis book describes wetting fundamentals and reviews the standard protocol for contact angle measurements. The authors include a brief overview of applications of contact angle measurements in surface science and engineering. They also discuss recent advances and research trends in wetting fundamentals and include measurement techniques and data interpretation of contract angles.
Surface and Interface Analysis: Principles and Applications
by Seong H. KimComprehensive textbook covering characterization techniques to understand the chemistry and structure of materials on surfaces and at interfaces Surface and Interface Analysis is a comprehensive textbook resource that covers everything readers need to know about surface energy, molecular speciation, and optical and physical characterization techniques. Assuming only basic knowledge of general chemistry (electronic orbitals, organic functional groups), physics (electromagnetic waves, Maxwell equations), physical chemistry (Schrödinger equation, harmonic oscillator), and mathematics (wave equations, covariance matrix), this textbook helps readers understand the underlying principles of the discussed characterization techniques and enables them to transform theoretical knowledge into applied skills through a Maieutic pedagogical approach. Written by a highly qualified professor, Surface and Interface Analysis: Principles and Applications includes information on: Relationship between atomic and molecular orbitals and compositional analysis principles based on measurements of photoelectrons, Auger electrons, X-rays, and secondary ions emitted from the surface Governance of electromagnetic wave propagation in a dielectric medium and what can be learned from analyzing the electromagnetic wave reflected from the interface Surface metrology using light reflection (non-contact) and scanning probe (contact) and analysis of mechanical properties through indentation Artifacts and misinterpretations that may be encountered during analysis Surface and Interface Analysis is an ideal textbook resource on the subject for graduate students in the fields of solid state physics, optics, materials science, chemistry, and engineering who want to learn and apply advanced materials characterization methods, along with undergraduate students in advanced elective courses.
Surface and Interfacial Aspects of Cell Adhesion
by K. L. Mittal A. CarréCell adhesion comes into play in almost all domains of life. The range of situations in which it occurs, involving organisms, living tissues, microorganisms or single cells, is endless. Cell adhesion is involved in the binding of a cell to a surface, extracellular matrix, or another cell using cell adhesion molecules. It is crucial in the formation
Surface and Interfacial Tension: Measurement, Theory, and Applications (Surfactant Science Ser. #Vol. 119)
by Stanley HartlandThis edited volume offers complete coverage of the latest theoretical, experimental, and computer-based data as summarized by leading international researchers. It promotes full understanding of the physical phenomena and mechanisms at work in surface and interfacial tensions and gradients, their direct impact on interface shape and movement, and t
Surface and Nanomolecular Catalysis
by Ryan RichardsUsing new instrumentation and experimental techniques that allow scientists to observe chemical reactions and molecular properties at the nanoscale, the authors of Surface and Nanomolecular Catalysis reveal new insights into the surface chemistry of catalysts and the reaction mechanisms that actually occur at a molecular level during catalys
Surface and Thin Film Analysis: A Compendium of Principles, Instrumentation, and Applications
by Henning Bubert Gernot FriedbacherSurveying and comparing all techniques relevant for practical applications in surface and thin film analysis, this second edition of a bestseller is a vital guide to this hot topic in nano- and surface technology. This new book has been revised and updated and is divided into four parts - electron, ion, and photon detection, as well as scanning probe microscopy. New chapters have been added to cover such techniques as SNOM, FIM, atom probe (AP),and sum frequency generation (SFG). Appendices with a summary and comparison of techniques and a list of equipment suppliers make this book a rapid reference for materials scientists, analytical chemists, and those working in the biotechnological industry. From a Review of the First Edition (edited by Bubert and Jenett) "... a useful resource..." (Journal of the American Chemical Society)
Surface and Tip-Enhanced Raman Scattering Spectroscopy: Bridging Theory and Applications
by Yukihiro Ozaki Marek Procházka Janina Kneipp Bing ZhaoThis book describes recent progress in the mechanistic studies and applications of surface-enhanced Raman scattering (SERS) and tip-enhanced Raman scattering (TERS). In this book, various novel techniques in SERS and TERS such as UV resonance TERS, electrochemical TERS, and three-dimensional SERS imaging are outlined. A number of new applications of SERS and TERS such as those to photonics, nanotechnology, microfluidics, and medical diagnosis along with future perspectives are also discussed. Finally, the applications of new data analysis, models, and machine learning in SERS and TERS studies are reviewed. The novelty of this book is the forming of a new bridge between the theory and applications. Also, the importance of chemical mechanism and that of semiconductor-enhanced Raman scattering is emphasized. The main audiences are researchers in academia, research institutes, companies, and graduate students looking for a comprehensive book on the latest studies of SERS and TERS.
Surface and Underground Excavations: Methods, Techniques and Equipment
by Ratan Raj TatiyaSurface and Underground Excavations – Methods, Techniques and Equipment (2nd edition) covers the latest technologies and developments in the excavation arena at any locale: surface or underground. In the first few chapters, unit operations are discussed and subsequently, excavation techniques are described for various operations: tunnelling, drifting, raising, sinking, stoping, quarrying, surface mining, liquidation and mass blasting as well as construction of large subsurface excavations such as caverns and underground chambers. The design, planning and development of excavations are treated in a separate chapter. Especially featured are methodologies to select stoping methods through incremental analysis.Furthermore, this edition encompasses comprehensive sections on mining at ‘ultra depths’, mining difficult deposits using non-conventional technologies, mineral inventory evaluation (ore – reserves estimation) and mine closure. Concerns over Occupational Health and Safety (OHS), environment and loss prevention, and sustainable development are also addressed in advocating a solution to succeed within a scenario of global competition and recession.This expanded second edition has been wholly revised, brought fully up-to-date and includes (wherever feasible) the latest trends and best practices, case studies, global surveys and toolkits as well as questions at the end of each chapter. This volume will now be even more appealing to students in earth sciences, geology, and in civil, mining and construction engineering, to practicing engineers and professionals in these disciplines as well as to all with a general or professional interest in surface and underground excavations.
Surface- and Groundwater Quality Changes in Periods of Water Scarcity
by Miloš GregorThis thesis deals with the evaluation of surface and groundwater quality changes in the periods of water scarcity in river catchment areas. The work can be divided into six parts. Existing methods of drought assessment are discussed in the first part, followed by the brief description of the software package HydroOffice, designed by the author. The software is dedicated to analysis of hydrological data (separation of baseflow, parameters of hydrological drought estimation, recession curves analysis, time series analysis). The capabilities of the software are currently used by scientist from more than 30 countries around the world. The third section is devoted to a comprehensive regional assessment of hydrological drought on Slovak rivers, followed by evaluation of the occurrence, course and character of drought in precipitation, discharges, base flow, groundwater head and spring yields in the pilot area of the Nitra River basin. The fifth part is focused on the assessment of changes in surface and groundwater quality during the drought periods within the pilot area. Finally, the results are summarized and interpreted, and rounded off with an outlook to future research.
Surface/Volume: How Geometry Explains Why Grain Elevators Explode, Hummingbirds Hover, and Asteroids are Colder than Ice
by Alan E. RubinThis book explains that diffusion, osmosis, dissolution, evaporation, and heat loss all preferentially affect small bodies due to their high surface/volume ratios. Because surface area increases as the square of length, but volume (and mass) increase as the cube, large objects have low surface/volume ratios and small objects have high surface/volume ratios. This simple physical constraint governs much of the physical world. It accounts for why the Earth has active volcanoes, but the Moon does not, why the human brain has numerous folds, why deciduous trees lose their leaves every Fall, and why nanoparticles of gold melt at surprisingly low temperatures. It is a phenomenon well known to every scientist, but this book is the first comprehensive treatment of this effect.
Surfaces and Interfaces in Natural Fibre Reinforced Composites
by Nicolas Le Moigne Belkacem Otazaghine Stéphane Corn Hélène Angellier-Coussy Anne BergeretThis book is addressed to Master and PhD students as well as researchers from academia and industry. It aims to provide the key definitions to understand the issues related to interface modifications in natural fibre based composites considering the particular supramolecular and micro- structures encountered in plant fibres. A particular emphasis is given to the modification and functionalization strategies of natural fibres and their impact on biocomposites behaviour and properties. Commonly used and newly developed treatment processes are described in view of scaling-up natural fibre treatments for their implementation in industry. Finally, a detailed and comprehensive description of the tools and methodologies developed to investigate and characterize surfaces and interfaces in natural fibre based composites is reviewed and discussed.
Surfaces and Interfaces of Biomimetic Superhydrophobic Materials
by Zhiguang Guo Fuchao YangA comprehensive and systematic treatment that focuses on surfaces and interfaces phenomena inhabited in biomimetic superhydrophobic materials, offering new fundamentals and novel insights. As such, this new book covers the natural surfaces, fundamentals, fabrication methods and exciting applications of superhydrophobic materials, with particular attention paid to the smart surfaces that can show switchable and reversible water wettability under external stimuli, such as pH, temperature, light, solvents, and electric fields. It also includes recent theoretical advances of superhydrophobic surfaces with regard to the wetting process, and some promising breakthroughs to promote this theory. As a result, materials scientists, physicists, physical chemists, chemical engineers, and biochemists will benefit greatly from a deeper understanding of this topic.
Surfaces and Interfaces of Electronic Materials (Wiley - IEEE #7)
by Leonard J. BrillsonAn advanced level textbook covering geometric, chemical, and electronic structure of electronic materials, and their applications to devices based on semiconductor surfaces, metal-semiconductor interfaces, and semiconductor heterojunctions. Starting with the fundamentals of electrical measurements on semiconductor interfaces, it then describes the importance of controlling macroscopic electrical properties by atomic-scale techniques. Subsequent chapters present the wide range of surface and interface techniques available to characterize electronic, optical, chemical, and structural properties of electronic materials, including semiconductors, insulators, nanostructures, and organics. The essential physics and chemistry underlying each technique is described in sufficient depth with references to the most authoritative sources for more exhaustive discussions, while numerous examples are provided throughout to illustrate the applications of each technique. With its general reading lists, extensive citations to the text, and problem sets appended to all chapters, this is ideal for students of electrical engineering, physics and materials science. It equally serves as a reference for physicists, material science and electrical and electronic engineers involved in surface and interface science, semiconductor processing, and device modeling and design. This is a coproduction of Wiley and IEEE* Free solutions manual available for lecturers at www.wiley-vch.de/supplements/
Surfaces and Interfaces of Metal Oxide Thin Films, Multilayers, Nanoparticles and Nano-composites: In Memory of Prof. Dr. Hanns-Ulrich Habermeier
by Paolo Mele Tamio Endo Satoru Kaneko Alejandro G. Roca Hanae Kijima-Aoki Elvira Fantechi Jana K. Vejpravova Martin KalbacThis book provides a general overview and current state of the art of different types of metal oxide nanomaterials, either in nanoparticles or thin film structure. It covers from the development and optimization of different nanofabrication/synthesis techniques for nanostructures which are currently the attention of the research community, the study of the structure and interactions by different characterization techniques of heterostructured materials and the final impact in different applications such as nanotherapy, data storage, super magnets, high-frequency devices. The book’s 13 chapters provide deep insight into the intriguing science of oxide materials and include contributions on novel technologies to fabricate nanomaterials with a broad range of functional properties (semiconducting, magnetic, ferroelectric, thermoelectric, optical, flexible and mechanical). This book is intended to the experts for consolidation of their knowledge but also for students who aim to learn and get basics of nanostructured metal oxides in diverse forms.
Surfacing and Additive Technologies in Welded Fabrication
by Igor Ryabtsev Serhii Fomichov Valerii Kuznetsov Yevgenia Chvertko Anna BaninThis book provides a comprehensive overview of a wide range of surfacing methods, detailing their physical basics and technologies. Each section of the book provides information on the formation of the structure and properties of the deposited metal, the reasons for the formation of defects, and directions for prevention. The book also covers the certification of surfacing procedures, adhering to international standards. With a focus on practical applications, the book is an essential reference for anyone working in the field of welding and related technologies. It includes detailed illustrations and diagrams, making it easy to understand and follow the concepts.
Surfactant Science and Technology
by Drew MyersA solid introduction to the field of surfactant science, this new edition provides updated information about surfactant uses, structures, and preparation, as well as seven new chapters expanding on technology applications. Offers a comprehensive introduction and reference of the science and technology of surface active materials Elaborates, more fully than prior editions, aspects of surfactant crystal structure as well as their effects on applications Adds more information on new classes and applications of natural surfactants in light of environmental consequences of surfactant use