Browse Results

Showing 63,201 through 63,225 of 66,380 results

Ultra-Low-Voltage Design of Energy-Efficient Digital Circuits

by Nele Reynders Wim Dehaene

This book focuses on increasing the energy-efficiency of electronic devices so that portable applications can have a longer stand-alone time on the same battery. The authors explain the energy-efficiency benefits that ultra-low-voltage circuits provide and provide answers to tackle the challenges which ultra-low-voltage operation poses. An innovative design methodology is presented, verified, and validated by four prototypes in advanced CMOS technologies. These prototypes are shown to achieve high energy-efficiency through their successful functionality at ultra-low supply voltages.

Ultra-Low-Voltage Frequency Synthesizer and Successive-Approximation Analog-to-Digital Converter for Biomedical Applications (Analog Circuits and Signal Processing)

by Chung-Chih Hung Shih-Hsing Wang

This book introduces the origin of biomedical signals and the operating principles behind them and introduces the characteristics of common biomedical signals for subsequent signal measurement and judgment. Since biomedical signals are captured by wearable devices, sensor devices, or implanted devices, these devices are all battery-powered to maintain long working time. We hope to reduce their power consumption to extend service life, especially for implantable devices, because battery replacement can only be done through surgery. Therefore, we must understand how to design low-power integrated circuits.Both implantable and in-vitro medical signal detectors require two basic components to collect and transmit biomedical signals: an analog-to-digital converter and a frequency synthesizer because these measured biomedical signals are wirelessly transmitted to the relevant receiving unit. The core unit of wireless transmission is the frequency synthesizer, which provides a wide frequency range and stable frequency to demonstrate the quality and performance of the wireless transmitter. Therefore, the basic operating principle and model of the frequency synthesizer are introduced. We also show design examples and measurement results of a low-power low-voltage integer-N frequency synthesizer for biomedical applications. The detection of biomedical signals needs to be converted into digital signals by an analog-to-digital converter to facilitate subsequent signal processing and recognition. Therefore, the operating principle of the analog-to-digital converter is introduced. We also show implementation examples and measurement results of low-power low-voltage analog-to-digital converters for biomedical applications.

Ultra-low Voltage Low Power Active-RC Filters and Amplifiers for Low Energy RF Receivers

by Lucas Compassi Severo Wilhelmus Adrianus Van Noije

This book presents innovative strategies to implement ultra-low voltage (ULV) and low power active circuits used in low energy RF receivers. The authors demonstrate that the use of single-stage amplifiers with the input negative transconductance compensation is a key strategy to allow the operation at low voltage levels with reduced power dissipation. Also, some design methodologies, based on the CMOS transistor operation point, are analyzed and a powerful design methodology is described for this kind of circuit. Readers will be enabled to implement the techniques described to design communication circuits with low power dissipation, useful in a variety of applications, including IoT/IoE devices.

Ultra Performance Liquid Chromatography Mass Spectrometry: Evaluation and Applications in Food Analysis

by Mu. Naushad Mohammad Rizwan Khan

This book presents a unique collection of up-to-date UPLC-MS/MS (ultra performance liquid chromatography-tandem mass spectrometric) methods for the separation and quantitative determination of pesticides, capsaicinoids, heterocyclic amines, aflatoxin, perfluorochemicals, acrylamide, procyanidins and alkaloids, lactose content, phenolic compounds, vitamins, and aroma and flavor compounds in a wide variety of foods and food products. With contributions by experts in interdisciplinary fields, this reference offers practical information for readers in research and development, production, and routing analysis of foods and food products.

Ultra-precision High Performance Cutting: Report of DFG Research Unit FOR 1845 (Lecture Notes in Production Engineering)

by Ekkard Brinksmeier Lars Schönemann

This book contains the research report of the DFG Research Unit FOR 1845 (2014-2020) of the Universities of Bremen and Hannover. The thematic focus lies on speeding up ultra-precision machining technology by following a holistic approach to high-performance cutting. This includes ultra-precision milling at high spindle speeds (>10000 rpm), precision tool setting mechanisms for multi-cutting-edge diamond milling tools, magnetic levitation technology for high velocity feed axes, and dedicated control strategies for error identification and compensation at high speeds. Furthermore, automation and measurement aspects of the machine setup process especially for precision balancing of the spindle rotors are presented. Finally, it is demonstrated that how the developed technologies may be integrated into a common machine tool setup. The target audience primarily comprises research experts and practitioners in production engineering, but the book may also be of interest to graduate students alike.

Ultra-Processed People: The Science Behind Food That Isn't Food

by Chris van Tulleken

New York Times Bestseller International Bestseller An Economist Best Book of 2023 • One of Smithsonian's Ten Best Books About Food of 2023 • A Financial Times Best Food and Drink Book of 2023 • A New Yorker Best Books of 2023 So Far • A Goodreads Choice Awards 2023 Nominee • An NPR 2023 "Books We Love" Pick A manifesto to change how you eat and how you think about the human body. It’s not you, it’s the food. We have entered a new age of eating. For the first time in human history, most of our calories come from an entirely novel set of substances called Ultra-Processed Food. There’s a long, formal scientific definition, but it can be boiled down to this: if it’s wrapped in plastic and has at least one ingredient that you wouldn’t find in your kitchen, it’s UPF. These products are specifically engineered to behave as addictive substances, driving excess consumption. They are now linked to the leading cause of early death globally and the number one cause of environmental destruction. Yet almost all our staple foods are ultra-processed. UPF is our food culture and for many people it is the only available and affordable food. In this book, Chris van Tulleken, father, scientist, doctor, and award-winning BBC broadcaster, marshals the latest evidence to show how governments, scientists, and doctors have allowed transnational food companies to create a pandemic of diet-related disease. The solutions don’t lie in willpower, personal responsibility, or exercise. You’ll find no diet plan in this book—but join Chris as he undertakes a powerful self-experiment that made headlines around the world: under the supervision of colleagues at University College London he spent a month eating a diet of 80 percent UPF, typical for many children and adults in the United States. While his body became the subject of scientific scrutiny, he spoke to the world’s leading experts from academia, agriculture, and—most important—the food industry itself. But more than teaching him about the experience of the food, the diet switched off Chris’s own addiction to UPF. In a fast-paced and eye-opening narrative he explores the origins, science, and economics of UPF to reveal its catastrophic impact on our bodies and the planet. And he proposes real solutions for doctors, for policy makers, and for all of us who have to eat. A book that won’t only upend the way you shop and eat, Ultra-Processed People will open your eyes to the need for action on a global scale.

Ultra-Reliable and Low-Latency Communications (URLLC) Theory and Practice: Advances in 5G and Beyond

by Trung Q. Duong Saeed R. Khosravirad Changyang She Petar Popovski Mehdi Bennis Tony Q.S. Quek

Ultra-Reliable and Low-Latency Communications (URLLC) Theory and Practice Comprehensive resource presenting important recent advances in wireless communications for URLLC services, including device-to-device communication, multi-connectivity, and more Ultra-Reliable and Low-Latency Communications (URLLC) Theory and Practice discusses the typical scenarios, possible solutions, and state-of-the-art techniques that enable URLLC in different perspectives from the physical layer to higher-level approaches, aiming to tackle URLLC’s challenges with both theoretical and practical approaches, which bridges the lacuna between theory and practice. With long-term contributions to the development of future wireless networks, the text systematically presents a thorough study of the novel and innovative paradigm of URLLC; basic requirements are covered, along with essential definitions, state-of-the-art technologies, and promising research directions of URLLC. To aid in reader comprehension, tables, figures, design schematics, and examples are provided to illustrate abstract engineering concepts and make the text more accessible to a broader readership, and corresponding case studies are included in the last part of the book. Fundamental problems in URLLC, including designing building blocks for URLLC, radio resource management in URLLC, resource optimization, network availability guarantee, and coexisting with other future mobile networks, are also discussed. In Ultra-Reliable and Low-Latency Communications (URLLC) Theory and Practice, readers can expect to find detailed information on: BCH and analog codes, stable matching, OFDM demodulation and turbo coding, and semi-blind receivers for URLLC MIMO-NOMA with URLLC, PHY and MAC layer technologies for URLLC, and Network slicing or SDN for URLLC and eMBB Integrating theoretical knowledge into deep learning for URLLC, Energy-Latency tradeoff in URLLC, and Downlink transmission for URLLC under physical layer aspects Resource allocation for multi-user downlink URLLC, HARQ optimization for 5G URLLC, and Multi-Access edge computing with URLLC A unique resource with comprehensive yet accessible coverage of a complicated subject, Ultra-Reliable and Low-Latency Communications (URLLC) Theory and Practice is an ideal resource for a large and diverse population of researchers and practitioners in engineering, computer scientists, and senior undergraduate and graduate students in related programs of study.

Ultra-Short Pulsed Laser Engineered Metal-Glass Nanocomposites

by Amin Abdolvand Andrei Stalmashonak Gerhard Seifert

Glasses containing metallic nanoparticles exhibit very promising linear and nonlinear optical properties, mainly due to the surface plasmon resonances (SPRs) of the nanoparticles. The spectral position in the visible and near-infrared range and polarization dependence of the SPR are characteristically determined by the nanoparticles' shapes. The focus of Ultra-Short Pulsed Laser Engineered Metal-Glass Nanocomposites is the interaction of intense ultra-short laser pulses with glass containing silver nanoparticles embedded in soda-lime glass, and nanostructural modifications in metal-glass nanocomposites induced by such laser pulses. In order to provide a comprehensive physical picture of the processes leading to laser-induced persistent shape transformation of the nanoparticles, series of experimental results investigating the dependences of laser assisted shape modifications of nanoparticles with laser pulse intensity, excitation wavelength, temperature are considered. In addition, the resulting local optical dichroism allows producing very flexibly polarizing optical (sub-) microstructures with well-specified optical properties. The achieved considerable progress towards technological application of this technique, in particular also for long-term optical data storage, is also discussed.

Ultra-thin Chip Technology and Applications

by Joachim Burghartz

Ultra-thin chips are the "smart skin" of a conventional silicon chip. This book shows how very thin and flexible chips can be fabricated and used in many new applications in microelectronics, Microsystems, biomedical and other fields. It provides a comprehensive reference to the fabrication technology, post processing, characterization and the applications of ultra-thin chips.

Ultra-Thin Sensors and Data Conversion Techniques for Hybrid System-in-Foil (Springer Theses)

by Mourad Elsobky

This book reports on the design, fabrication and characterization of a set of flexible electronic components, including on-foil sensors, organic thin-film transistors and ultra-thin chips. The core of the work is on showing how to combine high-performance integrated circuits with large-area electronic components on a single polymeric foil, to realize smart electronic systems for different applications, such as temperature, humidity and mechanical stress sensors. The book offers an extensive introduction to Hybrid System-in-Foil technology (HySiF), and related on-chip/on-foil passive and active components. It presents six case studies designed to highlight key HySiF challenges, together with the methodology to address those challenges. Last but not least, it describes the development of a reconfigurable, energy-efficient Analog-to-Digital Converter for HySiF. All in all, this book provides readers with extensive information on the state of the art in the design and characterization of integrated circuits and hybrid electronic systems on flexible polymeric substrates. By describing significant advances in organic thin-film transistor technology, this work is expected to pave the way to future developments in the area of energy-efficient smart sensors and integrated circuits.

Ultra-Weak Chemiluminescence

by Jin-Ming Lin Chao Lu Hui Chen

This book offers a complete and well-organized review of the latest advances made in developing ultra-weak chemiluminescence techniques for analytical applications. It systematically introduces the current theories, mechanisms, instruments, technologies, and real applications of ultra-weak chemiluminescence. Compared to books devoted to the normal chemiluminescence and bioluminescence, this book covers a wide range of ultra-weak chemiluminescence based on inorganic chemical reactions and nanotechnology from a principle and practical point of view. This book is intended for readers who are interested in expanding their knowledge of chemiluminescence and employing ultra-weak chemiluminescence techniques to develop new detection methods for analytical applications.

Ultra-Weak Photon Emission from Biological Systems: Endogenous Biophotonics and Intrinsic Bioluminescence

by Ilya Volodyaev Eduard Van Wijk Michal Cifra Yury A. Vladimirov

This book addresses the phenomenon of biological autoluminescence (also known as ultraweak photon emission, UPE, biochemiluminescence, or biophotons) and deals with a very broad spectrum of subjects, ranging from basic observational studies to molecular mechanisms, free-radical processes, physics of electron excitation and photon emission, as well as detection techniques. The chapter topics include UPE in plants, animals, and the human body; microorganisms and subcellular structures; and model systems, illustrating its high prevalence. Several sections of the book provide some backstory, with emphasis on methodology, unresolved questions, and existing controversies. The authors raise and discuss complex, potentially divisive aspects: Are there any reasons to assume the existence of non-chemical interaction in biological systems? Can research results in the field of mitogenetic radiation, delayed luminescence, and oxychemiluminescence of model systems, be correctly interpreted? What does the future hold for this area of research? Altogether, this publication gives the reader a thorough overview of biological autoluminescence (UPE, biophotonics) research, making it ideal for students and researchers who are new to the area as well as those who are specializing in it.

Ultra Wide Band Antennas

by Xavier Begaud

Ultra Wide Band Technology (UWB) has reached a level of maturity that allows us to offer wireless links with either high or low data rates. These wireless links are frequently associated with a location capability for which ultimate accuracy varies with the inverse of the frequency bandwidth. Using time or frequency domain waveforms, they are currently the subject of international standards facilitating their commercial implementation. Drawing up a complete state of the art, Ultra Wide Band Antennas is aimed at students, engineers and researchers and presents a summary of internationally recognized studies.

Ultra-Wideband and 60 GHz Communications for Biomedical Applications

by Mehmet R. Yuce

​ This book investigates the design of devices, systems, and circuits for medical applications using the two recently established frequency bands: ultra-wideband (3. 1-10. 6 GHz) and 60 GHz ISM band. These two bands provide the largest bandwidths available for communication technologies and present many attractive opportunities for medical applications. The applications of these bands in healthcare are wireless body area network (WBAN), medical imaging, biomedical sensing, wearable and implantable devices, fast medical device connectivity, video data transmission, and vital signs monitoring. The recent technological advances and developments proposed or used in medicine based on these two bands are covered. The book introduces possible solutions and design techniques to efficiently implement these systems in medical environment. All individual chapters are written by leading experts in their fields. Contributions by authors are on various applications of ultra-wideband and the 60 GHz ISM band including circuit implementation, UWB and 60 GHz signal transmission around and in-body, antenna design solution, hardware implementation of body sensors, UWB transceiver design, 60 GHz transceiver design, UWB radar for contactless respiratory monitoring, and ultra-wideband based medical Imaging. The book will be a key resource for medical professionals, bio-medical engineers, and graduate and senior undergraduate students in computer, electrical, electronic and biomedical engineering disciplines.

Ultra Wideband Antennas: Design, Methodologies, and Performance

by Giselle Galvan-Tejada Marco Peyrot-Solis Hildeberto Jardón Aguilar

Ultra Wideband Antennas: Design, Methodologies, and Performance presents the current state of the art of ultra wideband (UWB) antennas, from theory specific for these radiators to guidelines for the design of omnidirectional and directional UWB antennas. Offering a comprehensive overview of the latest UWB antenna research and development, this book: Discusses the developed theory for UWB antennas in frequency and time domains Delivers a brief exposition of numerical methods for electromagnetics oriented to antennas Describes solid-planar equivalence, which allows flat structures to be implemented instead of volumetric antennas Examines the impedance matching, phase linearity, and radiation patterns as design objectives for omnidirectional and directional antennas Addresses the time domain signal analysis for UWB antennas, from which the distortion phenomenon can be modeled Includes illustrative examples, design equations, CST MICROWAVE STUDIO® simulations, and MATLAB® plot generations Compares the performance of different UWB antennas, supplying useful insight into particular tendencies and unresolved problems Ultra Wideband Antennas: Design, Methodologies, and Performance provides a valuable reference for the scientific community, as UWB antennas have a variety of applications in body area networks, radar, imaging, spectrum monitoring, electronic warfare, wireless sensor networks, and more.

Ultra Wideband Demystified Technologies, Applications, and System Design Considerations (River Publishers Series In Communications Ser.)

by Sunil Jogi Manoj Choudhary

Ultra Wideband Demystified: Technologies, Applications, and System Design Considerations is a comprehensive text for emerging high speed short range wireless technology of Ultra Wideband. It provides background concepts and information on evolving standards and their development efforts, radio technology, practical system design/implementation and real life applications. The book also deliberates on the regulatory frameworks, security aspects and power management techniques essential to Ultra Wideband usage in consumer devices like portable handheld mobile devices. Important topics as UWB common radio usage for adapting to different existing/new applications and upper layer protocols like Wireless USB are also discussed.ContentsAbstract :• Introduction to Short Range Wireless;• Introduction to Ultra Wideband;• Evolution of UWB Standards;• Physical Layer;• Medium Access Layer;• Advanced MAC Features;• UWB System Design;• Adaptation to Multiple Applications;• Wireless USB;• Converging Marketplace; ReferencesForeword"This book is very timely, unique and fresh in its approach, coming from engineers who have been involved in system design and standard development stages. In particular, the book stands out amongst other literature available because it highlights system designer's viewpoints and because of it covering the whole gamut of technology from practitioner's viewpoints ... I would strongly recommend this book to System Designers, Practicing Engineers, Researchers in Academia and Industry, Product Marketing and Technical strategists for a comprehensive reading on the emerging UWB technologies. I commend Sunil Jogi and Manoj Choudhary for a very timely contribution."Bart Vertenten Chief Architect Connectivity, NXP Semiconductors

Ultra-Wideband Radio Frequency Identification Systems

by Farid Dowla Faranak Nekoogar

Ultra-wideband Radio Frequency Identification Systems describes the essentials of radio frequency identification (RFID)systems as well as their target markets. The book covers a study of commercially available RFID systems and characterizes their performance in terms of read range and reliability in the presence of conductive and dielectric materials. The capabilities and limitations of commercial RFID systems are reported followed by comprehensive discussions of the advantages and challenges of using ultra-wideband (UWB) technology for tag/reader communications. The book presents practical aspects of RFID system such as: EPC global and ISO standards, implementation, and target markets in a simple and easy to understand language.

Ultra-Wideband Radio Propagation Channels: A Practical Approach

by Pascal Pagani Friedman Tchoffo Talom Patrice Pajusco Bernard Uguen

Ultra Wide Band (UWB) technology consists of transmitting radio signals over frequency bandwidths from 500 MHz to several GHz. Its unique characteristics may be exploited for the design of high data rate wireless communication systems, as well as localization and imaging applications. The development and optimization of such systems require a precise knowledge of the radio transmission medium. This book examines all aspects of the propagation channel for UWB systems. UWB technology is first presented, with a particular emphasis being placed on its applications, spectrum regulation issues, and the different communication techniques. The authors introduce the theoretical bases of radioelectric propagation and give an overview of the channel sounding techniques adapted for UWB signals. The two main principles of UWB channel modeling are finally exposed and illustrated: deterministic channel modeling, based on the simulation of the propagation phenomena in a given environment, and statistical channel modeling, which relies on the experimental analysis of the main channel characteristics.

Ultra-Wideband RF System Engineering

by Thomas Zwick Aptara. Inc

This comprehensive summary of the state of the art in Ultra Wideband (UWB) system engineering takes you through all aspects of UWB design, from components through the propagation channel to system engineering aspects. Mathematical tools and basics are covered, allowing for a complete characterisation and description of the UWB scenario, in both the time and the frequency domains. UWB MMICs, antennas, antenna arrays, and filters are described, as well as quality measurement parameters and design methods for specific applications. The UWB propagation channel is discussed, including a complete mathematical description together with modeling tools. A system analysis is offered, addressing both radio and radar systems, and techniques for optimization and calibration. Finally, an overview of future applications of UWB technology is presented. Ideal for scientists as well as RF system and component engineers working in short range wireless technologies.

Ultra-Wideband, Short-Pulse Electromagnetics 10

by Frank Sabath Eric L. Mokole

This book presents contributions of deep technical content and high scientific quality in the areas of electromagnetic theory, scattering, UWB antennas, UWB systems, ground penetrating radar (GPR), UWB communications, pulsed-power generation, time-domain computational electromagnetics, UWB compatibility, target detection and discrimination, propagation through dispersive media, and wavelet and multi-resolution techniques. Ultra-wideband (UWB), short-pulse (SP) electromagnetics are now being used for an increasingly wide variety of applications, including collision avoidance radar, concealed object detection, and communications. Notable progress in UWB and SP technologies has been achieved by investigations of their theoretical bases and improvements in solid-state manufacturing, computers, and digitizers. UWB radar systems are also being used for mine clearing, oil pipeline inspections, archeology, geology, and electronic effects testing. Like previous books in this series, Ultra-Wideband Short-Pulse Electromagnetics 10 serves as an essential reference for scientists and engineers working in these applications areas.

Ultra-Wideband, Short Pulse Electromagnetics 9

by Armin Kaelin Frank Sabath Farhad Rachidi D. V. Giri

Ultra-wideband (UWB), short-pulse (SP) electromagnetics are now being used for an increasingly wide variety of applications, including collision avoidance radar, concealed object detection, and communications. Notable progress in UWB and SP technologies has been achieved by investigations of their theoretical bases and improvements in solid-state manufacturing, computers, and digitizers. UWB radar systems are also being used for mine clearing, oil pipeline inspections, archeology, geology, and electronic effects testing. Ultra-wideband Short-Pulse Electromagnetics 9 presents selected papers of deep technical content and high scientific quality from the UWB-SP9 Conference, which was held from July 21-25, 2008, in Lausanne, Switzerland. The wide-ranging coverage includes contributions on electromagnetic theory, time-domain computational techniques, modeling techniques, antennas, pulsed-power, UWB interactions, radar systems, UWB communications, broadband systems and components. This book serves as a state-of-the-art reference for scientists and engineers working in these applications areas.

Ultra Wideband Wireless Body Area Networks

by Kasun Maduranga Silva Thotahewa Jean-Michel Redouté Mehmet Rasit Yuce

This book explores the design of ultra wideband (UWB) technology for wireless body-area networks (WBAN) The authors describe a novel implementation of WBAN sensor nodes that use UWB for data transmission and narrow band for data reception, enabling low power sensor nodes, with high data rate capability The discussion also includes power efficient, medium access control (MAC) protocol design for UWB based WBAN applications and the authors present a MAC protocol in which a guaranteed delivery mechanism is utilized to transfer data with high priority Readers will also benefit from this book's feasibility analysis of the UWB technology for human implant applications through the study of electromagnetic and thermal power absorption of human tissue that is exposed to UWB signals

Ultrafast Dynamics Driven by Intense Light Pulses

by Markus Kitzler Stefanie Gräfe

This book documents the recent vivid developments in the research field of ultrashort intense light pulses for probing and controlling ultrafast dynamics. The recent fascinating results in studying and controlling ultrafast dynamics in ever more complicated systems such as (bio-)molecules and structures of meso- to macroscopic sizes on ever shorter time-scales are presented. The book is written by some of the most eminent experimental and theoretical experts in the field. It covers the new groundbreaking research directions that were opened by the availability of new light sources such as fully controlled intense laser fields with durations down to a single oscillation cycle, short-wavelength laser-driven attosecond pulses and intense X-ray pulses from the upcoming free electron lasers. These light sources allowed the investigation of dynamics in atoms, molecules, clusters, on surfaces and very recently also in nanostructures and solids in new regimes of parameters which, in turn, led to the identification of completely new dynamics and methods for controlling it. Example topics covered by this book include the study of ultrafast processes in large molecules using attosecond pulses, control of ultrafast electron dynamics in solids with shaped femtosecond laser pulses, light-driven ultrafast plasmonic processes on surfaces and in nanostructures as well as research on atomic and molecular systems under intense X-ray radiation. This book is equally helpful for people who would like to step into this field (e. g. young researchers), for whom it provides a broad introduction, as well as for already experienced researchers who may enjoy the exhaustive discussion that covers the research on essentially all currently studied objects and with all available ultrafast pulse sources.

Ultrafast Laser Nanostructuring: The Pursuit of Extreme Scales (Springer Series in Optical Sciences #239)

by Razvan Stoian Jörn Bonse

Bringing together contributions from leading experts in the field, this book reviews laser processing concepts that allow the structuring of material beyond optical limits, and methods that facilitate direct observation of the underlying mechanisms by exploring direct structuring and self-organization phenomena. The capacity to nanostructure material using ultrafast lasers lays the groundwork for the next generation of flexible and precise material processing tools. Rapid access to scales of 100 nm and below in two and three dimensions becomes a factor of paramount importance to engineer materials and to design innovative functions. To reflect the dynamic nature of the field at all levels from basic science to applications, the book is divided into three parts, Fundamental Processes, Concepts of Extreme Nanostructuring, and Applications, each of which is comprehensively covered. This book will be a useful resource for graduate students and researchers in laser processing, materials engineering, and nanoscience.

Ultrafast Lasers: A Comprehensive Introduction to Fundamental Principles with Practical Applications (Graduate Texts in Physics)

by Ursula Keller

This textbook presents a comprehensive introduction to ultrafast laser physics with a keen awareness of the needs of graduate students. It is self-contained and ready to use for both ultrafast laser courses and background for experimental investigation in the lab. The book starts with an advanced introduction to linear and nonlinear pulse propagation, details Q-switching and modelocking and goes into detail while explaining ultrashort pulse generation and measurement. Finally, the characterization of the laser signals is illustrated, and a broad range of applications presented. A multitude of worked examples and problems with solutions help to deepen the reader's understanding.

Refine Search

Showing 63,201 through 63,225 of 66,380 results