- Table View
- List View
Structural Vibration: Exact Solutions for Strings, Membranes, Beams, and Plates
by C.Y. Wang C.M. WangStructural Vibration: Exact Solutions for Strings, Membranes, Beams, and Plates offers an introduction to structural vibration and highlights the importance of the natural frequencies in design. It focuses on free vibrations for analysis and design of structures and machine and presents the exact vibration solutions for strings, membranes, beams, a
Structural Wood Design: ASD/LRFD
by Abi Aghayere Jason VigilThis text provides a concise and practical guide to timber design, using both the Allowable Stress Design and the Load and Resistance Factor Design methods. It suits students in civil, structural, and construction engineering programs as well as engineering technology and architecture programs, and also serves as a valuable resource for the practicing engineer. The examples based on real-world design problems reflect a holistic view of the design process that better equip the reader for timber design in practice.This new edition now includes the LRFD method with some design examples using LRFD for joists, girders and axially load members. is based on the 2015 NDS and 2015 IBC model code. includes a more in-depth discussion of framing and framing systems commonly used in practice, such as, metal plate connected trusses, rafter and collar tie framing, and pre-engineered framing. includes sample drawings, drawing notes and specifications that might typically be used in practice. includes updated floor joist span charts that are more practical and are easy to use. includes a chapter on practical considerations covering topics like flitch beams, wood poles used for footings, reinforcement of existing structures, and historical data on wood properties. includes a section on long span and high rise wood structures includes an enhanced student design project
Structure- and Adatom-Enriched Essential Properties of Graphene Nanoribbons
by Ngoc Thanh Thuy Tran Shih-Yang Lin Sheng-Lin Chang Wu-Pei Su Ming-Fa LinStructure- and Adatom-Enriched Essential Properties of Graphene Nanoribbons offers a systematic review of the feature-rich essential properties in emergent graphene nanoribbons, covering mainstream theoretical and experimental research. It includes a wide range of 1D systems; namely, armchair and zigzag graphene nanoribbons with and without hydrogen terminations, curved and zipped graphene nanoribbons, folded graphene nanoribbons, carbon nanoscrolls, bilayer graphene nanoribbons, edge-decorated graphene nanoribbons, and alkali-, halogen-, Al-, Ti, and Bi-absorbed graphene nanoribbons. Both multiorbital chemical bondings and spin arrangements, which are responsible for the diverse phenomena, are explored in detail. First-principles calculations are developed to thoroughly describe the physical, chemical, and material phenomena and concise images explain the fundamental properties. This book examines in detail the application and theory of graphene nanoribbons, offering a new perspective on up-to-date mainstream theoretical and experimental research.
Structure and Architecture
by Angus J. MacdonaldThis thoroughly updated edition of Angus J. Macdonald’s insightful book Structure and Architecture offers an in depth analysis of structural design and its relationship with architecture. It draws on clear explanations of the connections between structural form, structural performance and architectural design to explore the interface between the technical and the visual in architecture. Additional chapters in this new edition cover the fields of structural theory, structural philosophy, the contributions of prominent engineers to the evolution of Modern architecture, and the concept and practice of sustainable design. Fully illustrated, this critical appraisal of structures is a core-curriculum text for students of architecture, structural engineering and architectural history, and is also a valuable resource for practitioners of these disciplines.
Structure and Bonding in Crystalline Materials
by Gregory S. RohrerHow can elements be combined to produce a solid with specified properties? This book acquaints readers with the established principles of crystallography and cohesive forces needed to address the fundamental relationship among composition, structure and bonding. Starting with an introduction to periodic trends, the book discusses crystal structures and the various primary and secondary bonding types, and finishes by describing a number of models for predicting phase stability and structure. Its large number of worked examples, exercises, and detailed descriptions of numerous crystal structures make this an outstanding advanced undergraduate or graduate-level textbook for students of materials science.
Structure and Concentration of Point Defects in Selected Spinels and Simple Oxides
by Andrzej Stokłosa Stefan S. KurekStructure and Concentration of Point Defects in Selected Spinels and Simple Oxides presents diagrams and numerical data of important properties of spinels and oxides based on experimental results published in the literature. The values of many parameters presented can be used for optimization of preparation of new systems, to predict the practical properties of these systems. Applications include electronic devices, new metallic alloys with improved corrosion resistance, new ceramic materials, and novel catalysts, particularly for oxygen evolution and reduction reactions. Organized into four comprehensive parts, the authors present the problem of the structure and concentration of ionic and electronic defects in magnetite and hausmannite, pure and doped with M3+ cations, and in spinels exhibiting magnetic properties and high electric conductance. Additional Features include: Includes 236 figures presenting equilibrium diagrams of point defects and other useful details related to stoichiometric and nonstoichiometric spinels and oxides. Details novel methods of calculation of equilibria involving point defects. Collects scattered data published in nearly 500 original articles since the 1950s on spinels and oxides in one useful volume. Building upon the data presented, this book is an indispensable reference for material scientists and engineers developing new metal or oxide-based systems can easily calculate other useful parameters and compare the properties of different materials to select the best candidates for an intended use.
Structure and Electronic Properties of Ultrathin In Films on Si (Springer Theses)
by Shigemi TerakawaThis book reports the establishment of a single-atomic layer metal of In and a novel (In, Mg) ultrathin film on Si(111) surfaces. A double-layer phase of In called “rect” has been extensively investigated as a two-dimensional metal. Another crystalline phase called “hex” was also suggested, but it had not been established due to difficulty in preparing the sample. The author succeeded in growing the large and high-quality sample of the hex phase and revealed that it is a single-layer metal. The author also established a new triple-atomic layer (In, Mg) film with a nearly freestanding character by Mg deposition onto the In double layer. This work proposes a novel method to decouple ultrathin metal films from Si dangling bonds.The present study demonstrates interesting properties of indium itself, which is a p-block metal both with metallicity and covalency. In this book, readers also see principles of various surface analysis techniques and learn how to use them and analyze the results in the real systems. This book is useful to researchers and students interested in surface science, particularly ultrathin metal films on semiconductor surfaces.
Structure and Function
by Peter CombaThe thermodynamic properties, reactivities and electronic properties of molecular compounds and materials depend on structure. Therefore, an important basis for progress is to fully appreciate and fundamentally understand the intimate relation between structure and function. Structure and Function describes various fundamental aspects of structures, dynamics and physics of molecules and materials. The approaches, data and models discussed include new theoretical developments, computational studies and experimental work from molecular chemistry to biology and materials science.
Structure and Function in Agroecosystem Design and Management (Advances in Agroecology)
by Masae Shiyomi Hiroshi KoizumiStructure and Function in Agroecosystem Design and Management presents an advanced discussion of the need to design agricultural systems that 1) increase reliance on biological interactions in agroecosystems as a means of decreasing dependence on the use of large quantities of agrochemicals and the consumption of fossil fuel energy and 2) continue
Structure and Functional Properties of Colloidal Systems (Surfactant Science)
by Roque Hidalgo-ÁlvarezIntegrating fundamental research with the technical applications of this rapidly evolving field, Structure and Functional Properties of Colloidal Systems clearly presents the connections between structure and functional aspects in colloid and interface science. It explores the physical fundamentals of colloid science, new developments of synthesis
Structure and Functions of Pedosphere
by Bhoopander Giri Rupam Kapoor Qiang-Sheng Wu Ajit VarmaThis edited volume covers all aspects of the latest research in the field of soil formation and its functioning, soil diversity, soil proteomics, the impact of anthropogenic activities on the pedosphere, plant-microbe interactions in the pedosphere, and factors influencing the formation and functioning of the soils. In the pedosphere, all forms of soils possess a particular type of structure and different organic and mineral components. Thus, the pedosphere as a whole plays a significant role in providing unique habitats for a vast diversity of life forms, developing a link between geological and biological substances circulation in the terrestrial ecosystems. In the processes making available vital mineral elements to plants and supporting human health as various trace elements in the lithosphere are accessed by people through the formation of soils and such soils are utilized for food production. With the depth of information on different aspects of soil, this extensive volume is a valuable resource for the researchers in the area of soil science, agronomy, agriculture, scientists in academia, crop consultants, policymakers, government from diverse disciplines, and graduate and post-graduate students in the area of soil and environmental science.
Structure and Modeling of Complex Petroleum Mixtures
by Chunming Xu Quan ShiChemical structure and bonding. The scope of the series spans the entire Periodic Table and addresses structure and bonding issues associated with all of the elements. It also focuses attention on new and developing areas of modern structural and theoretical chemistry such as nanostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supramolecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. The individual volumes in the series are thematic. The goal of each volume is to give the reader, whether at a university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to a larger scientific audience.
Structure and Organic Matter Storage in Agricultural Soils
by M.R. Carter B.A. StewartSoils comprise the largest pool of terrestrial carbon and therefore are an important component of carbon storage in the biosphere-atmosphere system. Structure and Organic Matter Storage in Agricultural Soils explores the mechanisms and processes involved in the storage and sequestration of carbon in soils. Focusing on agricultural soils - from tropical to semi-arid types - this new book provides an in-depth look at structure, aggregation, and organic matter retention in world soils. The first two sections of the book introduce readers to the basic issues and scientific concepts, including soil structure, underlying mechanisms and processes, and the importance of agroecosystems as carbon regulators. The third section provides detailed discussions of soil aggregation and organic matter storage under various climates, soil types, and soil management practices. The fourth section addresses current strategies for enhancing organic matter storage in soil, modelling techniques, and measurement methods.Throughout the book, the importance of the soil structure-organic matter storage relationship is emphasized. Anyone involved in soil science, agriculture, agronomy, plant science, or greenhouse gas and global change studies should understand this relationship. Structure and Organic Matter Storage in Agricultural Soils provides an ideal source of information not only on the soil structure-storage relationship itself, but also on key research efforts and direct applications related to the storage of organic matter in agricultural soils.
Structure and Organization of Product Development Projects
by Josef Schlattmann Arthur SeibelThis book conveys useful knowledge, skills and behaviour that an engineer who is responsible for product development/project management often needs, but which is not given enough attention in the usual engineering education. It goes beyond the specialist knowledge into the human domain, because technical and/or organisational difficulties are in fact always based on human problems. The book is aimed at professionals and managers working in the development of machines, apparatus, equipment and the like, including the responsible organizational managers.
Structure and Performance of Cements
by P. Barnes J. BenstedDrawing together a multinational team of authors, this second edition of Structure and Performance of Cements highlights the latest global advances in the field of cement technology. Three broad categories are covered: basic materials and methods, cement extenders, and techniques of examination. Within these categories consideration has been given
Structure and Properties of Clusters: from a few Atoms to Nanoparticles
by George MaroulisThis volume on Clusters brings together contributions from a large number of specialists. A central element for all contributions is the use of advanced computational methodologies and their application to various aspects of structure, reactivity and properties of clusters. The size of clusters varies from a few atoms to nanoparticles.
Structure and Properties of Conducting Polymer Composites
by V.E. GulThe development of the principles of electrically conductive polymer composites and the creation of a wide variety of such materials have had a significant influence on modern technology. This volume in the "New Concepts in Polymer Science" series is devoted to various aspects of the structure and properties of electrically conductive polymer composites. This monograph is an attempt to systematize modern ideas on the interconnection of the structure and properties of ECPCs. Specific attention is given to the influence of electric current on kinetics and the direction of chemical interactive processes between such systems and air oxygen. The book also contains a special chapter which is devoted to the practical applications of electrically conductive polymer composites. It should be of use and interest to researchers working in the field.
Structure and Properties of Fat Crystal Networks
by Alejandro G. Marangoni Leendert H. WesdorpLipid science and technology has grown exponentially since the turn of the millennium. The replacement of unhealthy fats in the foods we eat, and of petroleum-based ingredients in the cosmetics we use, is a top priority for consumers, government, and industry alike. Particularly for the food industry, removing trans fats and reducing saturated fat
Structure and Properties of High-Entropy Alloys (Advanced Structured Materials #107)
by V. E. Gromov S. V. Konovalov Yu. F. Ivanov K. A. OsintsevThis book provides an overview of high entropy alloys, explaining all the basics of this new class of materials that emerged at the beginning of the 21st: It begins with the basics of the manufacturing methods of high entropy alloys and discusses the mechanical properties and deformation mechanisms of high entropy alloys. Then the book addresses the stability of these alloys and explores the prospects of high entropy alloys for applications.This book is intended as an introduction for physicists and materials scientists who need to become familiar with high entropy alloys.
Structure and Properties of Intermetallics in Pre-Transitional Low-Stability States
by A.I. Potekaev A.M. Glezer V.V. Kulagin M.D. Starostenkov A.A. KlopotThis book is dedicated to the fundamental physical aspects of stability, the influence of structural defects on the properties and structural phase transformations of BCC alloys. The authors present patterns that occur in the structural-phase states of functional alloys with low stability or instability under thermal cycling effects. Structural-phase transformations and the physical laws governing the influence of the thermomechanical effect on the properties of alloys are examined to advance development of technological processes for processing functional materials. Features: Studies the correlation between structural phase states and changes in the physico-mechanical properties of intermetallic compounds Explores the influence of thermomechanical cycling on the properties of functional alloys Details low-stability pretransition states in alloys
Structure and Properties of Liquid Crystals
by Lev M. BlinovThis book introduces the most important concepts related to the structure and physical properties of liquid crystals, including some of the theoretical aspects. It consists of three parts: structure, physical properties, and electro-optic behavior.
Structure and Reactivity of Coal
by Ke-Chang XieThis book provides insights into the development and usage of coal in chemical engineering. The reactivity of coal in processes such as pyrolysis, gasification, liquefaction, combustion and swelling is related to its structural properties. Using experimental findings and theoretical analysis, the book comprehensively answers three crucial issues that are fundamental to the optimization of coal chemical conversions: What is the structure of coal? How does the underlying structure determine the reactivity of different types of coal? How does the structure of coal alter during coal conversion? This book will be of interest to both individual readers and institutions involved in teaching and research into chemical engineering and energy conversion technologies. It is aimed at advanced- level undergraduate students. The text is suitable for readers with a basic knowledge of chemistry, such as first-year undergraduate general science students. Higher-level students with an in-depth understanding of the chemistry of coal will also benefit from the book. It will provide a useful reference resource for students and university-level teachers, as well as practicing engineers.
Structure Design and Degradation Mechanisms in Coastal Environments
by Abdelkarim Ait-Mokhtar Olivier MilletThis book provide a series of designs, materials, characterization and modeling, that will help create safer and stronger structures in coastal areas. The authors take a look at the different materials (porous, heterogeneous, concrete...), the moisture transfers in construction materials as well as the degradation caused by external attacks and put forth systems to monitor the structures or evaluate the performance reliability as well as degradation scenarios of coastal protection systems
Structure Determination by X-ray Crystallography
by Mark Ladd Rex PalmerThe advances in and applications of x-ray and neutron crystallography form the essence of this new edition of this classic textbook, while maintaining the overall plan of the book that has been well received in the academic community since the first edition in 1977. X-ray crystallography is a universal tool for studying molecular structure, and the complementary nature of neutron diffraction crystallography permits the location of atomic species in crystals which are not easily revealed by X-ray techniques alone, such as hydrogen atoms or other light atoms in the presence of heavier atoms. Thus, a chapter discussing the practice of neutron diffraction techniques, with examples, broadens the scope of the text in a highly desirable way. As with previous editions, the book contains problems to illustrate the work of each chapter, and detailed solutions are provided. Mathematical procedures related to the material of the main body of the book are not discussed in detail, but are quoted where needed with references to standard mathematical texts. To address the computational aspect of crystallography, the suite of computer programs from the fourth edition has been revised and expanded. The programs enable the reader to participate fully in many of the aspects of x-ray crystallography discussed in the book. In particular, the program system XRAY* is interactive, and enables the reader to follow through, at the monitor screen, the computational techniques involved in single-crystal structure determination, albeit in two dimensions, with the data sets provided. Exercises for students can be found int the book, and solutions are available to instructors.
Structure from Diffraction Methods
by Dermot O'Hare Richard I. Walton Duncan W. BruceInorganic materials show a diverse range of important properties that are desirable for many contemporary, real-world applications. Good examples include recyclable battery cathode materials for energy storage and transport, porous solids for capture and storage of gases and molecular complexes for use in electronic devices. An understanding of the function of these materials is necessary in order to optimise their behaviour for real applications, hence the importance of 'structure-property relationships'.The chapters presented in this volume deal with recent advances in the characterisation of crystalline materials. They include some familiar diffraction methods, thoroughly updated with modern advances. Also included are techniques that can now probe details of the three-dimensional arrangements of atoms in nanocrystalline solids, allowing aspects of disorder to be studied. Small-angle scattering, a technique that is often overlooked, can probe both ordered and disordered structures of materials at longer length scales than those probed by powder diffraction methods.Addressing both physical principals and recent advances in their applications, Structure from Diffraction Methods covers: Powder DiffractionX-Ray and Neutron Single-Crystal DiffractionPDF Analysis of NanoparticlesElectron CrystallographySmall-Angle ScatteringIdeal as a complementary reference work to other volumes in the series (Local Structural Characterisation and Multi Length-Scale Characterisation), or as an examination of the specific characterisation techniques in their own right, Structure from Diffraction Methods is a valuable addition to the Inorganic Materials Series.