Browse Results

Showing 64,426 through 64,450 of 72,151 results

Surface and Underground Excavations: Methods, Techniques and Equipment

by Ratan Raj Tatiya

Surface and Underground Excavations – Methods, Techniques and Equipment (2nd edition) covers the latest technologies and developments in the excavation arena at any locale: surface or underground. In the first few chapters, unit operations are discussed and subsequently, excavation techniques are described for various operations: tunnelling, drifting, raising, sinking, stoping, quarrying, surface mining, liquidation and mass blasting as well as construction of large subsurface excavations such as caverns and underground chambers. The design, planning and development of excavations are treated in a separate chapter. Especially featured are methodologies to select stoping methods through incremental analysis.Furthermore, this edition encompasses comprehensive sections on mining at ‘ultra depths’, mining difficult deposits using non-conventional technologies, mineral inventory evaluation (ore – reserves estimation) and mine closure. Concerns over Occupational Health and Safety (OHS), environment and loss prevention, and sustainable development are also addressed in advocating a solution to succeed within a scenario of global competition and recession.This expanded second edition has been wholly revised, brought fully up-to-date and includes (wherever feasible) the latest trends and best practices, case studies, global surveys and toolkits as well as questions at the end of each chapter. This volume will now be even more appealing to students in earth sciences, geology, and in civil, mining and construction engineering, to practicing engineers and professionals in these disciplines as well as to all with a general or professional interest in surface and underground excavations.

Surface Characteristics of Fibers and Textiles: Part Ii: (Fiber Science Ser. #7)

by M. J. Schick

The extraordinary growth in the production and use of man-made fibers over the past fewdecades has focused attention on the surface properties of fibers and textiles. This volumecombines surface science and technology in its presentation of the substantial progressthat has been made in the technology related to the surface characteristics of natural,synthetic, and glass fibers and textiles.Adopting an interdisciplinary approach , the coverage places emphasis upon the wetting,soiling, staining, frictional, and adhesive properties of fibers and fabrics, as well asphenomena related to these properties. The book offers critical reviews which describeexperimental facts, theories, and processes. Symbols are clearly defined in each chapter.Among the subjects covered are the surface properties of glass fibers, soil release, stainand water repellance, friction of fabrics, bonding of nonwovens, and the wetting of fibers.Surface Characteristics of Fibers and Textiles, Part II is an outstanding textbook forcourses dealing with surface chemistry, the mechanical properties of textiles, textiletechnology, and polymer chemistry . It is also a valuable reference book designed to makecurrent knowledge on these subjects accessible to industrial and academic researchers.

Surface Charging and Points of Zero Charge (Surfactant Science)

by null Marek Kosmulski

The Most Detailed Resource Available on Points of Zero ChargeWith their work growing in complexity, chemists involved with surface phenomena-related projects have outgrown the common resources available to them on points of zero charge (PZC) of oxides. Reporting on a limited number of materials in a limited number of scenarios, these resources ofte

Surface Chemistry and Geochemistry of Hydraulic Fracturing

by K. S. Birdi

Unique in focus, Surface Chemistry and Geochemistry of Hydraulic Fracturing examines the surface chemistry and phenomena in the hydrofracking process. Under great scrutiny as of late, the physico-chemical properties of hydrofracking are fully detailed and explained. Topics include the adsorption-desorption of gas on the shale reservoir surface and relevant waste-water treatment dependent on various surface chemistry principles. The aim of this book is to help engineers and research scientists recognize the basic surface chemistry principles related to this subject. Written by a long-time expert in the field, this book presents an unbiased account of the hard science and engineering involved in a resource that is gaining growing attention within the community.

Surface Chemistry Essentials

by null K. S. Birdi

Surface chemistry plays an important role in everyday life, as the basis for many phenomena as well as technological applications. Common examples range from soap bubbles, foam, and raindrops to cosmetics, paint, adhesives, and pharmaceuticals. Additional areas that rely on surface chemistry include modern nanotechnology, medical diagnostics, and d

Surface Chemistry of Carbon Capture: Climate Change Aspects

by K. S. Birdi

Surface Chemistry of Carbon Capture: Climate Change Aspects provides comprehensive and up-to-date literature on carbon capture and storage (CCS) technology and delineates the surface chemistry of this process. Mankind is dependent on energy from gas, oil, coal, atomic energy, and various other sources. In all fossil fuel combustion processes, carbon dioxide (CO2) is produced (ca. 25 Gt/year). In the past few decades, we have observed a constant increase in CO2 content in the air (currently ca. 400 ppm [0.04%]). This book discusses the technology related to carbon (i.e., CO2) capture and sequestration (CCS) from fossil fuel energy plants, which is considered an important means of CO2 control. It also covers the adsorption/absorption processes of CO2 on solids and similar procedures to help address growing climate change concerns.

Surface Contamination and Cleaning: Volume 1

by K. L. Mittal

This volume documents the proceedings of the International Symposium on Surface Contamination and Cleaning, held in Newark, New Jersey, May 23-25, 2001. Because of the importance of this topic in many technological areas, tremendous efforts have been devoted to devise novel and more efficient ways to monitor, analyse and characterize contamination

Surface Defects in Wide-Bandgap LiF, SiO2, and ZnO Crystals: Experiments and Simulations (SpringerBriefs in Materials)

by Utkirjon Sharopov

This book deals with surface defects in wide-bandgap crystals of lithium fluoride, silicon dioxide, and zinc oxide. Encompassing topics such as radiation-induced amorphization, crystallization, and various microstructural developments arising from defect production and annealing, the book delves into controlled modifications of physical and chemical properties, micro and nano-structuring of surfaces, and the creation and behavior of structures far from thermal equilibrium, including supersaturated solid solutions, ion tracks, and surfaces treated with electron- and high-intensity ion beams. Beyond its relevance to the academic community, this monograph serves as a valuable resource for design and installation organizations, offering insights for specialists involved in the development of modern, new, and energy-efficient innovative materials. The applicability extends to traditional silicon energy and semiconductor electronics, providing practical knowledge for professionals engaged in these fields. Additionally, the work is of significance to a broad spectrum of specialists and managers in various organizations involved in the development of lithium-ion batteries for energy storage systems, especially those employing cutting-edge high-performance materials. As a comprehensive reference in materials science, this monograph caters to a diverse audience engaged in the ongoing advancements and applications within this dynamic field. It is suitable for scientific and engineering professionals, as well as researchers specializing in materials science, physics, semiconductors, photovoltaics, defects engineering, laser technology, solid-state physics, and beam-enhanced synthesis and modification of materials.

Surface Design For Ceramics (A\lark Ceramics Book Ser.)

by M. Mills

This studio reference captures all the popular techniques available for embellishing clay, as well as a wealth of practical information and detailed images that lead readers through every phase of the design and decorating process.

Surface Diffusion: Metals, Metal Atoms, and Clusters

by Grażyna Antczak Gert Ehrlich

For the first time, this book unites the theory, experimental techniques and computational tools used to describe the diffusion of atoms, molecules and nanoparticles across metal surfaces. Starting with an outline of the formalism that describes diffusion on surfaces, the authors guide the reader through the principles of atomic movement, before moving on to diffusion under special circumstances, such as the presence of defects or foreign species. With an initial focus on the behaviour of single entities on a surface, later chapters address the movement of clusters of atoms and the interactions between adatoms. While there is a special emphasis on experimental work, attention is paid to the increasingly valuable contributions theoretical work has made in this field. This book has wide interdisciplinary appeal and is ideal for researchers in solid state physics, chemistry as well as materials science, and engineering.

Surface Displacement Measurement from Remote Sensing Images

by Olivier Cavalie Emmanuel Trouve

Drastic improvements in both access to satellite images and data processing tools today allow near real-time observation of Earth surface deformations. Remote sensing imagery is thus a powerful, reliable and spatially dense source of information that can be used to understand the Earth and its surface manifestations as well as mitigate natural hazards.This book offers for the first time a complete overview of the methodological approaches developed to measure surface displacement using synthetic aperture radar (SAR) and optical imagery, as well as their applications in the monitoring of major geophysical phenomena. More specifically, the first part of the book presents the theory behind SAR interferometry (InSAR) and image correlation and its latest developments. In the second part, most of the geophysical phenomena that trigger Earth surface deformations are reviewed.Surface Displacement Measurement from Remote Sensing Images unveils the potential and sensitivity of the measurement of Earth surface displacements from remote sensing imagery.

Surface Effects in Solid Mechanics

by Holm Altenbach Nikita F Morozov

This book summarizes the actual state of the art and future trends of surface effects in solid mechanics. Surface effects are more and more important in the precise description of the behavior of advanced materials. One of the reasons for this is the well-known from the experiments fact that the mechanical properties are significantly influenced if the structural size is very small like, for example, nanostructures. In this book, various authors study the influence of surface effects in the elasticity, plasticity, viscoelasticity. In addition, the authors discuss all important different approaches to model such effects. These are based on various theoretical frameworks such as continuum theories or molecular modeling. The book also presents applications of the modeling approaches.

Surface Engineering

by Gary L. Doll Yip-Wah Chung D. S. Misra Ashok Kumar Kyoshi Yatsui John J. Moore

These proceedings from the 2002 TMS Annual Meeting address the scientific issues related to surface engineering phenomenon in synthesis, characterization, and application for all materials. This collection of papers provides a multidisciplinary discussion on surface-related phenomena by which materials performance may be enhanced through engineered interfaces and surface modification technologies. Applied experimental and theoretical aspects that highlight, develop, and utilize approaches to understand and improve surface phenomena are also included.A collection of papers from the 2002 TMS Annual Meeting and Exhibition held in Seattle, Washington, February 17-21, 2002.

Surface Engineering: Enhancing Life Of Tribological Components

by Dheerendra Kumar Dwivedi

This book is intended to help engineers analyze service condition and potential mechanisms of surface degradation. This will enable engineers select suitable materials for improved service-life and performance of engineering components. The book comprises 7 chapters, and is well illustrated with schematics, photographs, microstructure, XRD patterns, EDAX mapping, and technical data tables. The book focuses on the influence of materials and methods of surface engineering on structure, properties, and wear-performance of engineering components. It begins with the need to study the subject of surface engineering, scope of surface engineering, and classification of techniques of surface engineering. The book covers conventional material system (steel, cast iron, stellite, WC-Co, PCDs, etc.) and new materials like multilayer structures, functionally gradient materials (FGMs), intermetallic barrier coatings, and thermal barrier coating. The book covers most conventional as well as advanced surface engineering techniques, such as burnishing, shot peening, flame and induction hardening, laser and electron beam hardening, plasma and TIG melting, carburizing, nitriding, cyaniding, boronizing, vanadizing, ion implantation, laser alloying, chemical vapor deposition, PE chemical vapor deposition, physical vapor deposition, weld overlays, laser cladding, hot dip galvanizing, hot dip lead tin coating, hot dip aluminizing, hot dip chromizing, electroplating, electroless plating (Ni-P and Ni-B), mechanical plating, roll bonding, explosive bonding, and hot isostatic. The book also includes an introductory chapter on friction-stir processing of aluminum and titanium alloys. Further, it discusses studies on structure, mechanical and wear properties of weld surfacing, flame spray coating, HVOF sprayed coating, laser cladding of ferrous metals, nickel and cobalt based alloys and their composites in as-sprayed and heat-treated conditions. The book provides a comprehensive overview of various destructive and nondestructive techniques used for characterization of engineered surfaces. The materials in the book will be useful to undergraduate and graduate students. In addition, the contents of this book can also be used for professional development courses for practicing engineers.

Surface Engineering: Processes and Applications

by Ken N. Strafford

Surface Engineering: Processes and Applications: This volume covers both innovative and basic methods of surface engineering for improved surface properties.

Surface Engineering: Methods and Applications

by R. S. Walia Qasim Murtaza Shailesh Mani Pandey Ankit Tyagi

Surface engineering is considered an important aspect in the reduction of friction and wear. This reference text discusses a wide range of surface engineering technologies along with applications in a comprehensive manner. The book describes various methods in surface engineering technology with a thorough explanation of various aspects of each process that comes under this domain. Apart from an enhanced explanation of the process and its attributes, this book also gives insight into the types of materials, applications, and optimization of surface engineering techniques. It discusses important topics including surface engineering of the functionality of graded materials, materials characterization, processing of biomaterials, design, surface modification technologies and process control, smart manufacturing, artificial intelligence, and machine learning applications. The book • discusses computational and simulation analyses for better selection of process parameters. • covers optimizations of processes with state-of-the-art technologies. • discusses applications of surface engineering in medical, agricultural, architecture engineering, and allied sectors. • covers processing techniques of biomaterials in surface engineering. The text is useful for senior undergraduate, graduate students, and academic researchers working in diverse areas such as industrial and production engineering, mechanical engineering, materials science, and manufacturing science. It covers a hybrid process for surface modification, modeling techniques, and issues in surface engineering.

Surface Engineering and Functional Nanomaterials for Point-of-Care Analytical Devices

by Buddhadev Purohit Pranjal Chandra

This book chronicles the role of advanced nanomaterials and surface engineering technologies in the development of point-of-care biosensors for health and environmental monitoring. All aspects of nanomaterial synthesis and characterization, functionalization methods, sensing surface engineering, signal amplification strategies, use of innovative technologies to enhance sensor efficiency and performances, and innovative applications of nanobiosensors to tackle real-life problems are discussed in this book with a focus on optical and electrochemical based sensing. It also covers the detection of infectious diseases and various disease biomarkers, smartphone-based biosensing, and portable diagnostics module developments with a discussion on the working mechanisms of these devices in various domains. The book also illustrates the recent trends in biosensing, and an overview of the challenges and probable solutions for the translation of biosensors from laboratory prototypes to commercial success. ​

Surface Engineering for Enhanced Performance against Wear

by Manish Roy

Surface Engineering constitutes a variety of processes and sub processes. Each chapter of this work covers specific processes by experts working in the area. Included for each topic are tribological performances for each process as well as results of recent research. The reader also will benefit from in-depth studies of diffusion coatings, nanocomposite films for wear resistance, surfaces for biotribological applications, thin-film wear, tribology of thermal sprayed coatings, hardfacing, plating for tribology and high energy beam surface modifications. Material scientists as well as engineers working with surface engineering for tribology will be particularly interested in this work.

Surface Engineering of Biomaterials: Synthesis and Processing Techniques (Emerging Materials and Technologies)

by Ajit Behera Debasis Nayak Biswajit Kumar Swain

Surface engineering provides one of the most important means of engineering product differentiation in terms of quality, performance, and lifecycle cost. It is essential to achieve predetermined functional properties of materials such as mechanical strength, biocompatibility, corrosion resistance, wear resistance, and heat and oxidation resistance. Surface Engineering of Biomaterials addresses this topic across a diverse range of process technologies and healthcare applications. Introduces biomaterial surface science and surface engineering and includes criteria for biomaterial surface selection Focuses on a broad array of materials including metals, ceramics, polymers, alloys, and composites Discusses corrosion, degradation, and material release issues in implant materials Covers various processing routes to develop biomaterial surfaces, including for smart and energy applications Details techniques for post-modification of biomaterial surfaces This reference work helps researchers working at the intersection of materials science and biotechnology to engineer functional biomaterials for a variety of applications.

Surface Engineering of Graphene (Carbon Nanostructures)

by Sumanta Sahoo Santosh Kumar Tiwari Ganesh Chandra Nayak

This book presents the state of the art in the processing, properties, and applications in various fields of science and technology related to graphene and its derivatives. It also discusses the limitations and drawbacks of graphene due to some of its intrinsic properties. Further, it provides a brief overview of graphene analogs, comparing the properties of graphene with those of other similar 2D materials.

Surface Engineering of Modern Materials (Engineering Materials)

by Kapil Gupta

This book focuses on surface engineering of a wide range of modern materials such as smart alloys, light metals, polymers, and composites etc. for their improved manufacturability. It discusses the effect of surface engineering processes namely friction stir processing, forming, spark erosion, welding, laser heating, and coating etc. on various properties of modern materials. The book aims to facilitate researchers and engineers for manufacturing modern materials for numerous commercial, precision and scientific applications.

Surface Flute Waves in Plasmas: Eigenwaves, Excitation, and Applications (Springer Series on Atomic, Optical, and Plasma Physics #120)

by Igor Girka Manfred Thumm

This book presents a comprehensive theoretical study of the electromagnetic eigenwaves propagating perpendicular to the axis of symmetry in various cylindrical waveguide-structures filled with magneto-active plasma. It is the second, updated and significantly expanded edition of our book “Surface Flute Waves in Plasmas. Theory and Applications”, published in 2014 in the “Springer Series on Atomic, Optical, and Plasma Physics”. First, the text is complemented by a study of the wave energy rotation around the axis of the waveguides. Second, excitation of these waves by an electron beam gyrating around the axis is investigated in detail. “Surface waves” means that these waves only propagate along plasma surfaces and not in uniform infinite plasmas. Their wave amplitudes decrease with going away from the plasma boundary into the plasma depth. “Flute” means that the axial wavenumbers kz of the waves in plasma cylinders are assumed to be zero, and the waves only propagate in azimuthal direction. In this case, the surfaces of constant density resemble fluted Greek columns. However, the presence of a small but finite kz can be taken into account by the method of successive approximations, using the theory of surface flute waves as zeroth approach. A variety of present applications of surface waves and possible future applications are also included.The book applies to both professionals dealing with physical and technological problems of confined plasmas and to graduate and post-graduate students specializing in the fíelds of electrodynamics, plasma physics and related applications.

Surface Functionalized Metal Catalysts (Topics in Organometallic Chemistry #75)

by Luis M. Martínez-Prieto

This book covers recent advances in the field of surface functionalized metal catalysts. It not only explores novel catalysts based on metal nanoparticles immobilized on functionalized supports, but also provides an overview of the latest developments in the study of the influence of capping ligands on metal nanoparticle catalysis. Catalysis with surface functionalized metallic systems is attracting significant interest due to the possibility to precisely control the reactivity of surface active sites. Controlling the synthesis, characterization and application of these catalysts offers new possibilities to classical heterogenous catalysis.

Surface Guided Radiation Therapy

by Jeremy D. P. Hoisak Adam B. Paxton Benjamin Waghorn Todd Pawlicki

Surface Guided Radiation Therapy provides a comprehensive overview of optical surface image guidance systems for radiation therapy. It serves as an introductory teaching resource for students and trainees, and a valuable reference for medical physicists, physicians, radiation therapists, and administrators who wish to incorporate surface guided radiation therapy (SGRT) into their clinical practice. This is the first book dedicated to the principles and practice of SGRT, featuring: Chapters authored by an internationally represented list of physicists, radiation oncologists and therapists, edited by pioneers and experts in SGRT Covering the evolution of localization systems and their role in quality and safety, current SGRT systems, practical guides to commissioning and quality assurance, clinical applications by anatomic site, and emerging topics including skin mark-less setups. Several dedicated chapters on SGRT for intracranial radiosurgery and breast, covering technical aspects, risk assessment and outcomes. Jeremy Hoisak, PhD, DABR is an Assistant Professor in the Department of Radiation Medicine and Applied Sciences at the University of California, San Diego. Dr. Hoisak’s clinical expertise includes radiosurgery and respiratory motion management. Adam Paxton, PhD, DABR is an Assistant Professor in the Department of Radiation Oncology at the University of Utah. Dr. Paxton’s clinical expertise includes patient safety, motion management, radiosurgery, and proton therapy. Benjamin Waghorn, PhD, DABR is the Director of Clinical Physics at Vision RT. Dr. Waghorn’s research interests include intensity modulated radiation therapy, motion management, and surface image guidance systems. Todd Pawlicki, PhD, DABR, FAAPM, FASTRO, is Professor and Vice-Chair for Medical Physics in the Department of Radiation Medicine and Applied Sciences at the University of California, San Diego. Dr. Pawlicki has published extensively on quality and safety in radiation therapy. He has served on the Board of Directors for the American Society for Radiology Oncology (ASTRO) and the American Association of Physicists in Medicine (AAPM).

Surface Impedance Boundary Conditions: A Comprehensive Approach

by null Sergey V. Yuferev null Nathan Ida

Surface Impedance Boundary Conditions is perhaps the first effort to formalize the concept of SIBC or to extend it to higher orders by providing a comprehensive, consistent, and thorough approach to the subject.The product of nearly 12 years of research on surface impedance, this book takes the mystery out of the largely overlooked SIBC. It provides an understanding that will help practitioners select, use, and develop these efficient modeling tools for their own applications. Use of SIBC has often been viewed as an esoteric issue, and they have been applied in a very limited way, incorporated in computation as an ad hoc means of simplifying the treatment for specific problems. Apply a Surface Impedance "Toolbox" to Develop SIBCs for Any ApplicationThe book not only outlines the need for SIBC but also offers a simple, systematic method for constructing SIBC of any order based on a perturbation approach. The formulation of the SIBC within common numerical techniques—such as the boundary integral equations method, the finite element method, and the finite difference method—is discussed in detail and elucidated with specific examples. Since SIBC are often shunned because their implementation usually requires extensive modification of existing software, the authors have mitigated this problem by developing SIBCs, which can be incorporated within existing software without system modification. The authors also present: Conditions of applicability, and errors to be expected from SIBC inclusion Analysis of theoretical arguments and mathematical relationships Well-known numerical techniques and formulations of SIBC A practical set of guidelines for evaluating SIBC feasibility and maximum errors their use will produce A careful mix of theory and practical aspects, this is an excellent tool to help anyone acquire a solid grasp of SIBC and maximize their implementation potential.

Refine Search

Showing 64,426 through 64,450 of 72,151 results