- Table View
- List View
Wave 2002: Proceedings of the WAVE 2002 Workshop, Yokohama, Japan, 2002
by Nawawi Chouw; Günther SchmidDetailing the proceedings of the Wave 2002 workshop at Okayama University in Japan, this collection of eighteen peer-reviewed papers concerns the issue of the ground vibration and noise caused by construction activities, explosions in the ground, or high-speed trains. Providing key information for engineers, researchers, scientists, practitioners, teachers and students working in the field of structural dynamics or soil dynamics, this text also includes a useful address list in the appendix to enable readers to gather further information if required.
Wave Dispersion Characteristics of Continuous Mechanical Systems
by Farzad EbrahimiWave Dispersion Characteristics of Continuous Mechanical Systems provides a mechanical engineering-based analysis of wave dispersion response in various structures created from different materials. Looking at materials including strengthened nanocomposites, functionally graded materials, metal foams, and anisotropic materials, it uses analytical solution methods to solve typical problems in the framework of a micromechanics approach. Nanocomposites are a novel type of composite materials, fabricated by dispersing nanosized reinforcements in a matrix to combine the material properties of the matrix with the improved properties of nanosized elements. This book enables readers to learn about the theory and practical applications of this rapidly evolving field. Practically minded, the book investigates the impact of employing various nanofillers and demonstrates how this augments stiffness within the nanocomposite. Topics covered include agglomeration and waviness of nanofillers, porosity, elastic mediums, fluid flow, and the impact of the thermal environment on a propagated wave. Using mathematical formulations to solve wave dispersion characteristics of structures including beams, plates, and shells, the book obtains equations of structures using first- and higher-order shear deformation theories. This book will be of interest to professional engineers working in material and mechanical engineering, nanocomposites, nanofillers, and micromechanics. It will also be of interest to students in these fields.
Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials (Advanced Structured Materials #59)
by Mezhlum A. SumbatyanThis volume deals with topical problems concerning technology and design in construction of modern metamaterials. The authors construct the models of mechanical, electromechanical and acoustical behavior of the metamaterials, which are founded upon mechanisms existing on micro-level in interaction of elementary structures of the material. The empiric observations on the phenomenological level are used to test the created models.The book provides solutions, based on fundamental methods and models using the theory of wave propagation, nonlinear theories and composite mechanics for media with micro- and nanostructure. They include the models containing arrays of cracks, defects, with presence of micro- and nanosize piezoelectric elements and coupled physical-mechanical fields of different nature. The investigations show that the analytical, numerical and experimental methods permit evaluation of the qualitative and quantitative properties of the materials of this sort, with diagnosis of their effective characteristics, frequency intervals of effective energetic cutting and passing, as well as effective regimes of damage evaluation by the acoustic methods.
Wave Dynamics, Mechanics and Physics of Microstructured Metamaterials: Theoretical and Experimental Methods (Advanced Structured Materials #109)
by Mezhlum A. SumbatyanThis book addresses theoretical and experimental methods for exploring microstructured metamaterials, with a special focus on wave dynamics, mechanics, and related physical properties. The authors use various mathematical and physical approaches to examine the mechanical properties inherent to particular types of metamaterials. These include: • Boundary value problems in reduced strain gradient elasticity for composite fiber-reinforced metamaterials • Self-organization of molecules in ferroelectric thin films • Combined models for surface layers of nanostructures • Computer simulation at the micro- and nanoscale • Surface effects with anisotropic properties and imperfect temperature contacts • Inhomogeneous anisotropic metamaterials with uncoupled and coupled surfaces or interfaces • Special interface finite elements and other numerical and analytical methods for composite structures
Wave-Forced Sediment Erosion and Resuspension in the Yellow River Delta (Springer Oceanography)
by Yonggang Jia Xiaolei Liu Shaotong Zhang Hongxian Shan Jiewen ZhengThis book focuses on the phenomenon of sediment erosion and resuspension in the Yellow River delta, China, which is a vital issue involved in understanding the sediment transport processes in estuarine and coastal environments, and how these contribute to the nature and distribution of geohazards in the subaqueous Yellow River delta and Bohai Sea. The most important sections of this book will be the detailed physical mechanisms and theoretical models of sediment erosion and resuspension problem fully considering the wave-induced seabed dynamic response to waves, which are particularly useful for postgraduate students and junior researchers entering the discipline of estuary and coastal sedimentation, marine geotechnical engineering, estuary and coastal engineering, harbor and waterway engineering and coastal environmental protection. This book can also serve as a textbook for advanced graduate students of Marine Engineering Geology and Estuarine Sediment Dynamics.
Wave Forces on Offshore Structures
by Turgut Sarp" SarpkayaA highly regarded senior scholar in the field, Sarpkaya offers a clear and thorough presentation of the physics of ocean hydrodynamics and its effects on structures. The classes of offshore structures are described in a short introduction, followed by a review of fundamental equations and concepts of motion, rotational and irrotational flows, velocity potential, Euler's equations, steam function and other concepts. The remainder of the text describes separation and time-dependent flows, waves and wave-structure interactions, wave forces on large bodies, vortex-induced vibrations, and hydrodynamic damping. Clearly written, with frequent use of italics to provide emphasis for key concepts, and including all mathematical formulae, this will be an essential text for engineers developing offshore structures. Annotation ©2010 Book News, Inc. , Portland, OR (booknews. com)
Wave Motion in Elastic Solids
by Karl F. GraffThis highly useful textbook presents comprehensive intermediate-level coverage of nearly all major topics of elastic wave propagation in solids. The subjects range from the elementary theory of waves and vibrations in strings to the three-dimensional theory of waves in thick plates. The book is designed not only for a wide audience of engineering students, but also as a general reference for workers in vibrations and acoustics. Chapters 1-4 cover wave motion in the simple structural shapes, namely strings, longitudinal rod motion, beams and membranes, plates and (cylindrical) shells. Chapters 5-8 deal with wave propagation as governed by the three-dimensional equations of elasticity and cover waves in infinite media, waves in half-space, scattering and diffraction, and waves in thick rods, plates, and shells.To make the book as self-contained as possible, three appendices offer introductory material on elasticity equations, integral transforms and experimental methods in stress waves. In addition, the author has presented fairly complete development of a number of topics in the mechanics and mathematics of the subject, such as simple transform solutions, orthogonality conditions, approximate theories of plates and asymptotic methods.Throughout, emphasis has been placed on showing results, drawn from both theoretical and experimental studies, as well as theoretical development of the subject. Moreover, there are over 100 problems distributed throughout the text to help students grasp the material. The result is an excellent resource for both undergraduate and graduate courses and an authoritative reference and review for research workers and professionals.
Wave Propagation: An Introduction to Engineering Analyses
by James H. WilliamsAn engineering-oriented introduction to wave propagation by an award-winning MIT professor, with highly accessible expositions and mathematical details—many classical but others not heretofore published.A wave is a traveling disturbance or oscillation—intentional or unintentional—that usually transfers energy without a net displacement of the medium in which the energy travels. Wave propagation is any of the means by which a wave travels. This book offers an engineering-oriented introduction to wave propagation that focuses on wave propagation in one-dimensional models that are anchored by the classical wave equation. The text is written in a style that is highly accessible to undergraduates, featuring extended and repetitive expositions and displaying and explaining mathematical and physical details—many classical but others not heretofore published. The formulations are devised to provide analytical foundations for studying more advanced topics of wave propagation.After a precalculus summary of rudimentary wave propagation and an introduction of the classical wave equation, the book presents solutions for the models of systems that are dimensionally infinite, semi-infinite, and finite. Chapters typically begin with a vignette based on some aspect of wave propagation, drawing on a diverse range of topics. The book provides more than two hundred end-of-chapter problems (supplying answers to most problems requiring a numerical result or brief analytical expression). Appendixes cover equations of motion for strings, rods, and circular shafts; shear beams; and electric transmission lines.
Wave Propagation Analysis of Smart Nanostructures
by Farzad Ebrahimi Ali DabbaghWave Propagation Analysis of Smart Nanostructures presents a mathematical framework for the wave propagation problem of small-scale nanobeams and nanoplates manufactured from various materials, including functionally graded composites, smart piezoelectric materials, smart magneto-electro-elastic materials, smart magnetostrictive materials, and porous materials. In this book, both classical and refined higher-order shear deformation beam and plate hypotheses are employed to formulate the wave propagation problem using the well-known Hamilton’s principle. Additionally, the influences of small-scale nanobeams on the mechanical behaviors of nanostructures are covered using both nonlocal elasticity and nonlocal strain gradient elasticity theories. Impacts of various terms, such as elastic springs of elastic foundation, damping coefficient of viscoelastic substrate, different types of temperature change, applied electric voltage and magnetic potential, and intensity of an external magnetic field on the dispersion curves of nanostructures, are included in the framework of numerous examples.
Wave Propagation and Radiation in Gyrotropic and Anisotropic Media
by Abdullah ErogluWave Propagation and Radiation in Gyrotropic and Anisotropic Media fills the gap in the area of applied electromagnetics for the design of microwave and millimeter wave devices using composite structures where gyrotropic, anisotropic materials are used. The book provides engineers with the information on theory and practical skills they need to understand wave propagation and radiation characteristics of materials and the ability to design devices at higher frequencies with optimum device performance.
Wave Propagation Approach for Structural Vibration (Springer Tracts in Mechanical Engineering)
by Chongjian WuThis book is intended for researchers, graduate students and engineers in the fields of structure-borne sound, structural dynamics, and noise and vibration control.Based on vibration differential equations, it presents equations derived from the exponential function in the time domain, providing a unified framework for structural vibration analysis, which makes it more regular and normalized. This wave propagation approach (WPA) divides structures at “discontinuity points,” and the waves show characteristics of propagation, reflection, attenuation, and waveform conversion. In each segment of the system between two “discontinuity points,” the governing equation and constraint are expressed accurately, allowing the dynamic properties of complex systems to be precisely obtained.Starting with basic structures such as beams and plates, the book then discusses theoretical research on complicated and hybrid dynamical systems, and demonstrates that structural vibration can be analyzed from the perspective of elastic waves by applying WPA.
Wave Propagation in a Random Medium (Dover Books on Physics)
by Richard A. Silverman Lev A. ChernovThis monograph by a prominent Russian expert was a ground-breaking contribution to the literature on the theory of wave propagation in randomly inhomogeneous media. Since the publication of the first English translation in 1960, the systematic treatment has been widely used by scientists, engineers, and advanced undergraduate students in such fields as acoustics, radio-wave physics, and optics. The three-part treatment begins with a study of the problem of wave propagation using the ray approximation, followed by the second part's examination of the diffraction theory of wave propagation. The final part explores the question of how fluctuations in the incident wave affect the diffraction image formed by a focusing system, a question of considerable interest in hydroacoustics and astronomical optics. Some of the theoretical deductions are compared with experimental data, and two appendixes contain more elaborate calculations. This edition serves as a companion volume to Wave Propagation in a Turbulent Medium, also available from Dover Publications.
Wave Propagation in Materials and Structures
by Srinivasan GopalakrishnanThis book focuses on basic and advanced concepts of wave propagation in diverse material systems and structures. Topics are organized in increasing order of complexity for better appreciation of the subject. Additionally, the book provides basic guidelines to design many of the futuristic materials and devices for varied applications. The material in the book also can be used for designing safer and more lightweight structures such as aircraft, bridges, and mechanical and structural components. The main objective of this book is to bring both the introductory and the advanced topics of wave propagation into one text. Such a text is necessary considering the multi-disciplinary nature of the subject. This book is written in a step-by step modular approach wherein the chapters are organized so that the complexity in the subject is slowly introduced with increasing chapter numbers. Text starts by introducing all the fundamental aspects of wave propagations and then moves on to advanced topics on the subject. Every chapter is provided with a number of numerical examples of increasing complexity to bring out the concepts clearly The solution of wave propagation is computationally very intensive and hence two different approaches, namely, the Finite Element method and the Spectral Finite method are introduced and have a strong focus on wave propagation. The book is supplemented by an exhaustive list of references at the end of the book for the benefit of readers.
Wave Propagation in Nanostructures
by Srinivasan Gopalakrishnan Saggam NarendarWave Propagation in Nanostructures describes the fundamental and advanced concepts of waves propagating in structures that have dimensions of the order of nanometers. The book is fundamentally based on non-local elasticity theory, which includes scale effects in the continuum model. The book predominantly addresses wave behavior in carbon nanotubes and Graphene structures, although the methods of analysis provided in this text are equally applicable to other nanostructures. The book takes the reader from the fundamentals of wave propagation in nanotubes to more advanced topics such as rotating nanotubes, coupled nanotubes, and nanotubes with magnetic field and surface effects. The first few chapters cover the basics of wave propagation, different modeling schemes for nanostructures and introduce non-local elasticity theories, which form the building blocks for understanding the material provided in later chapters. A number of interesting examples are provided to illustrate the important features of wave behavior in these low dimensional structures.
Wave Propagation in Solid and Porous Half-Space Media
by Hamid R. Hamidzadeh Liming Dai Reza N. JazarThis book covers advanced topics in dynamic modeling of soil-foundation interaction, as well as the response of elastic semi-infinite media from an applications viewpoint. Advanced concepts such as solutions for analysis of elastic semi-infinite mediums, fluid motion in porous media, and nonlinearities in dynamic behavior are explained in great detail. Related theories and numerical analysis for vertical vibration, and rocking vibration of a rigid rectangular mass-less plate, and horizontal vibration of a rigid mass-less plate are presented. Throughout the book, a strong emphasis is placed on applications, and a laboratory model for elastic half-space medium is provided.
Wave Propagation in Structures: Spectral Analysis Using Fast Discrete Fourier Transforms (Mechanical Engineering Series)
by James F. DoyleThis third edition builds on the introduction of spectral analysis as a means of investigating wave propagation and transient oscillations in structures. Each chapter of the textbook has been revised, updated and augmented with new material, such as a modified treatment of the curved plate and cylinder problem that yields a relatively simple but accurate spectral analysis. Finite element methods are now integrated into the spectral analyses to gain further insights into the high-frequency problems. In addition, a completely new chapter has been added that deals with waves in periodic and discretized structures. Examples for phononic materials meta-materials as well as genuine atomic systems are given.
Wave Technology in Mechanical Engineering: Industrial Applications of Wave and Oscillation Phenomena
by R. F. Ganiev V. P. Kasilov S. R. Ganiev A. P. PustovgarThis groundbreaking volume covers the significant advantages of wave technologies in the development of innovative machine building where high technologies with appreciable economic effect are applied.<P><P> These technologies cover many industries, including the oil-and-gas industry, refining and other chemical processing, petrochemical industry, production of new materials, composite and nano-composites including, construction equipment, environmental protection, pharmacology, power generation, and many others. The technological problem of grinding, fine-scale grinding and activation of solid particles (dry blends) is disclosed. This task is common for the production of new materials across these various industries. At present in this sphere the traditional methods have reached their limits and in some cases are economically ineffective from both scientific and practical points of view. The authors have detailed, through their extensive groundbreaking research, how these new methods, based on wave technology, can be used to create new, more efficient and less expensive applications and materials for industry. From increasing oil recovery to building stronger machines more efficiently and creating more productive membrane separation devices, wave technology can be used as a fertile ground for product innovation and more efficient methods of production across a variety of industries. This book is the only one of its kind in the world and offers a unique and invaluable glance into this sophisticated and complicated scientific area that is only now being more fully utilized for its valuable benefits.
Wave Theory of Information
by Massimo FranceschettiUnderstand the relationship between information theory and the physics of wave propagation with this expert guide. Balancing fundamental theory with engineering applications, it describes the mechanism and limits for the representation and communication of information using electromagnetic waves. Information-theoretic laws relating functional approximation and quantum uncertainty principles to entropy, capacity, mutual information, rate distortion, and degrees of freedom of band-limited radiation are derived and explained. Both stochastic and deterministic approaches are explored, and applications for sensing and signal reconstruction, wireless communication, and networks of multiple transmitters and receivers are reviewed. With end-of-chapter exercises and suggestions for further reading enabling in-depth understanding of key concepts, it is the ideal resource for researchers and graduate students in electrical engineering, physics and applied mathematics looking for a fresh perspective on classical information theory.
Wave Turbulence
by Sergey NazarenkoWave Turbulence refers to the statistical theory of weakly nonlinear dispersive waves. There is a wide and growing spectrum of physical applications, ranging from sea waves, to plasma waves, to superfluid turbulence, to nonlinear optics and Bose-Einstein condensates. Beyond the fundamentals the book thus also covers new developments such as the interaction of random waves with coherent structures (vortices, solitons, wave breaks), inverse cascades leading to condensation and the transitions between weak and strong turbulence, turbulence intermittency as well as finite system size effects, such as "frozen" turbulence, discrete wave resonances and avalanche-type energy cascades. This book is an outgrow of several lectures courses held by the author and, as a result, written and structured rather as a graduate text than a monograph, with many exercises and solutions offered along the way. The present compact description primarily addresses students and non-specialist researchers wishing to enter and work in this field.
Waveform Analysis of Sound
by Mikio TohyamaWhat is this sound? What does that sound indicate? These are two questions frequently heard in daily conversation. Sound results from the vibrations of elastic media and in daily life provides informative signals of events happening in the surrounding environment. In interpreting auditory sensations, the human ear seems particularly good at extracting the signal signatures from sound waves. Although exploring auditory processing schemes may be beyond our capabilities, source signature analysis is a very attractive area in which signal-processing schemes can be developed using mathematical expressions. This book is inspired by such processing schemes and is oriented to signature analysis of waveforms. Most of the examples in the book are taken from data of sound and vibrations; however, the methods and theories are mostly formulated using mathematical expressions rather than by acoustical interpretation. This book might therefore be attractive and informative for scientists, engineers, researchers, and graduate students who are interested in the mathematical representation of signals and the applications of Fourier analysis. The book can be described as being practically self-contained but does assume readers are familiar with introductory topics in discrete signal processing, as in the discrete Fourier transform. Hence this book might be also usable as a textbook in graduate courses in applied mathematics on topics such as complex functions. Almost all scientific phenomena are sensed as waves propagating in some space. Over the years, waveform analysis has therefore been one of the resilient academic areas of study and still is seen as fertile ground for development. In particular, waveform analysis based on the theory of linear systems would be a good example where a physical interpretation can be given to the mathematical theory of complex functions in terms of magnitude, angle, poles, and zeros of complex functions. For readers who are interested in the physical aspects of sound and vibration data or elementary formulation of wave equations and their solutions, the book Sound and Signals by M. Tohyama (Springer 2011) is recommended. It can serve as a complementary companion to this present volume or independently as a good reference.
Wavefront Shaping and Pupil Engineering (Springer Series in Optical Sciences #235)
by Jorge Ojeda-CastañedaThis book presents a simple, yet comprehensive, treatment of the basic principles and applications of novel phase masks and non-uniform optical windows under the increasingly popular umbrella term “pupil engineering.” It discusses current research topics in the areas of phase-space representations for engineering imaging devices with extended depth of field, as well as sparse optical sensing and emergent phenomena such as vortices and singularities, highlighting the heuristic applications of key concepts in novel models and their graphic representations. The book is appealing to anyone interested in robotic vision and is a valuable resource for upper-level students, teachers, scientists, and engineers in the field of image science, lasers, and digital image processing.
Waveguide Propagation of Nonlinear Waves: Impact of Inhomogeneity and Accompanying Effects (Springer Series on Atomic, Optical, and Plasma Physics #109)
by Sergey LebleThis book addresses the peculiarities of nonlinear wave propagation in waveguides and explains how the stratification depends on the waveguide and confinement. An example of this is an optical fibre that does not allow light to pass through a density jump. The book also discusses propagation in the nonlinear regime, which is characterized by a specific waveform and amplitude, to demonstrate so-called solitonic behaviour. In this case, a wave may be strongly localized, and propagates with a weak change in shape. In the waveguide case there are additional contributions of dispersion originating from boundary or asymptotic conditions.Offering concrete guidance on solving application problems, this essentially (more than twice) expanded second edition includes various aspects of guided propagation of nonlinear waves as well as new topics like solitonic behaviour of one-mode and multi-mode excitation and propagation and plasma waveguides, propagation peculiarities of electromagnetic waves in metamaterials, new types of dispersion, dissipation, electromagnetic waveguides, planetary waves and plasma waves interaction.The key feature of the solitonic behaviour is based on Coupled KdV and Coupled NS systems. The systems are derived in this book and solved numerically with the proof of stability and convergence. The domain wall dynamics of ferromagnetic microwaveguides and Bloch waves in nano-waveguides are also included with some problems of magnetic momentum and charge transport.
Wavelet Analysis with Applications to Image Processing
by Lakshman Prasad S. Sitharama IyengarWavelet analysis is among the newest additions to the arsenals of mathematicians, scientists, and engineers, and offers common solutions to diverse problems. However, students and professionals in some areas of engineering and science, intimidated by the mathematical background necessary to explore this subject, have been unable to use this powerful tool.The first book on the topic for readers with minimal mathematical backgrounds, Wavelet Analysis with Applications to Image Processing provides a thorough introduction to wavelets with applications in image processing. Unlike most other works on this subject, which are often collections of papers or research advances, this book offers students and researchers without an extensive math background a step-by-step introduction to the power of wavelet transforms and applications to image processing.The first four chapters introduce the basic topics of analysis that are vital to understanding the mathematics of wavelet transforms. Subsequent chapters build on the information presented earlier to cover the major themes of wavelet analysis and its applications to image processing. This is an ideal introduction to the subject for students, and a valuable reference guide for professionals working in image processing.
Wavelet-Based Vibration Control of Smart Buildings and Bridges
by Hojjat Adeli Hongjin KimEarthquakes, bridge collapses, and other natural disasters have dominated news coverage in the last few years. Aging infrastructure needs to be rehabilitated and new infrastructure needs to be designed differently. Presenting a highly innovative, modern approach verging on the futuristic, Wavelet-Based Vibration Control of Smart Buildings and Bridges discusses a new generation of building and bridge structures that not only withstands [generation is singular] the destructive effects of nature but is also impact and explosion resistant. Based on the groundbreaking work of Hojit Adeli, the book introduces the new mathematical concept of wavelets into the field of structural vibration control. It presents a new control algorithm for robust control of smart civil structures subjected to destructive environmental forces, such as earthquakes and wind. It then discusses a new hybrid control system, the hybrid tuned liquid column damper (TLCD) system. The new hybrid control system, which combines passive and semi-active control systems, is intended to achieve increased reliability and maximum operability of the control system during power failure and to eliminate the need for a larger power requirement. The great majority of papers published in this area of active structural vibration control deal with small or academic problems. The models in this book have been tested and their effectiveness evaluated extensively on small problems for the sake of comparison with other methods and results reported in the literature. The authors go one step further and apply them to realistic and large building and bridge structures to demonstrate the applicability of the new smart technology to large real-world civil structures. Balancing coverage between theory and application, the book demonstrates the benefits of the new smart technology in the design of structures that are safer and more sustainable.
Wavelet Numerical Method and Its Applications in Nonlinear Problems (Engineering Applications of Computational Methods #6)
by You-He ZhouThis book summarizes the basic theory of wavelets and some related algorithms in an easy-to-understand language from the perspective of an engineer rather than a mathematician. In this book, the wavelet solution schemes are systematically established and introduced for solving general linear and nonlinear initial boundary value problems in engineering, including the technique of boundary extension in approximating interval-bounded functions, the calculation method for various connection coefficients, the single-point Gaussian integration method in calculating the coefficients of wavelet expansions and unique treatments on nonlinear terms in differential equations. At the same time, this book is supplemented by a large number of numerical examples to specifically explain procedures and characteristics of the method, as well as detailed treatments for specific problems. Different from most of the current monographs focusing on the basic theory of wavelets, it focuses on the use of wavelet-based numerical methods developed by the author over the years. Even for the necessary basic theory of wavelet in engineering applications, this book is based on the author’s own understanding in plain language, instead of a relatively difficult professional mathematical description. This book is very suitable for students, researchers and technical personnel who only want to need the minimal knowledge of wavelet method to solve specific problems in engineering.