- Table View
- List View
Thermal Analysis of Pharmaceuticals
by Duncan Q. M. CraigAs a result of the Process Analytical Technologies (PAT) initiative launched by the U.S. Food and Drug Administration (FDA), analytical development is receiving more attention within the pharmaceutical industry. Illustrating the importance of analytical methodologies, Thermal Analysis of Pharmaceuticals presents reliable and versatile charac
Thermal Analysis of Polymeric Materials: Methods and Developments
by Krzysztof Pielichowski Kinga PielichowskaAn all-in-one reference work covering the essential principles and techniques on thermal behavior and response of polymeric materials This book delivers a detailed understanding of the thermal behavior of polymeric materials evaluated by thermal analysis methods. It covers the most widely applied principles which are used in method development to substantiate what happens upon heating of polymers. It also reviews the key application areas of polymers in materials science. Edited by two experts in the field, the book covers a wide range of specific topics within the aforementioned categories of discussion, such as: Crucial thermal phenomena - glass transition, crystallization behavior and curing kinetics Polymeric materials that have gained considerable interest over the last decade The latest advancements in techniques related to the field, such as modulated temperature DSC and fast scanning calorimetry The recent advances in hyphenated techniques and their applications Polymer chemists, chemical engineers, materials scientists, and process engineers can use this comprehensive reference work to gain clarity on the topics discussed within and learn how to harness them in practical applications across a wide range of disciplines.
Thermal Analysis of Power Electronic Devices Used in Renewable Energy Systems
by Alhussein Albarbar Canras BatunluThis book analyzes the thermal characteristics of power electronic devices (PEDs) with a focus on those used in wind and solar energy systems. The authors focus on the devices used in such applications, for example boost converters and inverters under different operating conditions. The book explains in detail finite element modeling techniques, setting up measuring systems, data analysis, and PEDs' lifetime calculations. It is appropriate reading for graduate students and researchers who focus on the design and reliability of power electronic devices.
Thermal and Catalytic Processing in Petroleum Refining Operations (Petroleum Refining Technology Series)
by James G. SpeightThis book presents the thermal and catalytic processes in refining. The differences between each type of process and the types of feedstock that can be used for the processes are presented. Relevant process data is provided, and process operations are fully described. This accessible guide is written for managers, professionals, and technicians as well as graduate students transitioning into the refining industry. Key Features: Describes feedstock evaluation and the effects of elemental, chemical, and fractional composition. Details reactor types and bed types. Explores the process options and parameters involved. Assesses coke formation and additives. Considers next generation processes and developments.
Thermal and Flow Measurements
by T.-W. LeeThermal and flow processes are ubiquitous in mechanical, aerospace and chemical engineering systems. Experimental methods including thermal and flow diagnostics are therefore an important element in preparation of future engineers and researchers in this field. Due to the interdisciplinary nature of experimentation, a fundamental guidance book is e
Thermal and Mineral Waters
by Werner Balderer Adam Porowski Hussein Idris James W. LamoreauxThis is a compilation of manuscripts on mineral and thermal waters of different areas of the world. This special volume is devoted to the 41st Meeting of the Commission on Mineral and Thermal Waters of International Association of Hydrogeologists (IAH-CMTW) held in Cairo, Egypt, in October 2009. The presentations collected and presented in this volume show the variety of aspects of mineral and thermal waters occurrence and utilization in different countries of the world with a special focus on Egypt, Iran, Ukraine, Poland, Russia and Australia.
Thermal and Nonthermal Encapsulation Methods (Advances in Drying Science and Technology)
by Magdalini KrokidaEncapsulation is a topic of interest across a wide range of scientific and industrial areas, from pharmaceutics to food and agriculture, for the protection and controlled release of various substances during transportation, storage, and consumption. Since encapsulated materials can be protected from external conditions, encapsulation enhances their stability and maintains their viability. This book offers a comprehensive review of conventional and modern methods for encapsulation. It covers various thermal and nonthermal encapsulation methods applied across a number of industries, including freeze drying, spray drying, spray chilling and spray cooling, electrospinning/electrospraying, osmotic dehydration, extrusion, air-suspension coating, pan coating, and vacuum drying. The book presents basic fundamentals, principles, and applications of each method, enabling the reader to gain extended knowledge. The choice of the most suitable encapsulation technique is based on the raw materials, the required size, and the desirable characteristics of the final products.
Thermal and Structural Electronic Packaging Analysis for Space and Extreme Environments (Resilience and Sustainability in Civil, Mechanical, Aerospace and Manufacturing Engineering Systems)
by Juan Cepeda-Rizo Jeremiah Gayle Joshua RavichHave you ever wondered how NASA designs, builds, and tests spacecrafts and hardware for space? How is it that wildly successful programs such as the Mars Exploration Rovers could produce a rover that lasted over ten times the expected prime mission duration? Or build a spacecraft designed to visit two orbiting destinations and last over 10 years when the fuel ran out? This book was written by NASA/JPL engineers with experience across multiple projects, including the Mars rovers, Mars helicopter, and Dawn ion propulsion spacecraft in addition to many more missions and technology demonstration programs. It provides useful and practical approaches to solving the most complex thermal-structural problems ever attempted for design spacecraft to survive the severe cold of deep space, as well as the unforgiving temperature swings on the surface of Mars. This is done without losing sight of the fundamental and classical theories of thermodynamics and structural mechanics that paved the way to more pragmatic and applied methods such finite element analysis and Monte Carlo ray tracing, for example. Features: Includes case studies from NASA’s Jet Propulsion Laboratory, which prides itself in robotic exploration of the solar system, as well as flyting the first cubeSAT to Mars. Enables spacecraft designer engineers to create a design that is structurally and thermally sound, and reliable, in the quickest time afforded. Examines innovative low-cost thermal and power systems. Explains how to design to survive rocket launch, the surfaces of Mars and Venus. Suitable for practicing professionals as well as upper-level students in the areas of aerospace, mechanical, thermal, electrical, and systems engineering, Thermal and Structural Electronic Packaging Analysis for Space and Extreme Environments provides cutting-edge information on how to design, and analyze, and test in the fast-paced and low-cost small satellite environment and learn techniques to reduce the design and test cycles without compromising reliability. It serves both as a reference and a training manual for designing satellites to withstand the structural and thermal challenges of extreme environments in outer space.
Thermal and Time Stability of Amorphous Alloys
by A. Glezer A. Potekaev A. CheretaevaThis reference is dedicated to the problem of time-temperature stability of amorphous (non-crystalline) metal alloys with strongly nonequilibrium structure and unique physical and mechanical properties that are obtained by quenching from the melt at a rate that exceeds one millions of degrees c.o.s. second. As a stability test, the behavior of the plasticity of amorphous alloys is studied. The book examines the fundamental characteristics of amorphous alloys, the basic laws of structural relaxation, generalized information about the phenomenon of the ductile-brittle transition (temper embrittlement), the development of physically justified methods of predicting the stability of the properties, and provides information about the attempts of controlling the structure for the purpose of suppressing or deceleration of the ductile-brittle transition and, as a consequence, increasing the temperature and temporal stability of the amorphous state.
Thermal-Aware Testing of Digital VLSI Circuits and Systems
by Santanu ChattopadhyayThis book aims to highlight the research activities in the domain of thermal-aware testing. Thermal-aware testing can be employed both at circuit level and at system level Describes range of algorithms for addressing thermal-aware test issue, presents comparison of temperature reduction with power-aware techniques and include results on benchmark circuits and systems for different techniques This book will be suitable for researchers working on power- and thermal-aware design and the testing of digital VLSI chips
Thermal Barrier Coatings: Failure Theory and Evaluation Technology
by Yichun Zhou Li Yang Wang ZhuThis book highlights the failure theories and evaluation techniques of thermal barrier coatings, covering the thermal-mechanical–chemical coupling theories, performance and damage characterization techniques, and related evaluations. Thermal barrier coatings are the key thermal protection materials for high-temperature components in advanced aeroengines. Coating spallation is a major technical bottleneck faced by researchers. The extremely complex microstructure, diverse service environments, and failure behaviors bring challenges to the spallation analysis in terms of the selective use of mechanical theories, experimental methods, and testing platforms. In the book, the authors provide a systematic summary of the latest research and technological advances and present their insights and findings in the past couple of decades. This book is not only suitable for researchers and engineers in thermal barrier coatings and related fields but also a good reference for upper-undergraduate and postgraduate students of materials science and mechanics majors.
Thermal Behavior of Photovoltaic Devices
by Olivier Dupré Rodolphe Vaillon Martin A. GreenThis book provides a comprehensive introduction to the thermal issues in photovoltaics. It also offers an extensive overview of the physics involved and insights into possible thermal optimizations of the different photovoltaic device technologies. In general, temperature negatively affects the efficiency of photovoltaic devices. The first chapter describes the temperature-induced losses in photovoltaic devices and reviews the strategies to overcome them. The second chapter introduces the concept of temperature coefficient, the underlying physics and some guidelines for reducing their negative impacts. Subsequent chapters offer a comprehensive and general thermal model of photovoltaic devices, and review how current and emerging technologies, mainly solar cells but also thermophotovoltaic devices, can benefit from thermal optimizations. Throughout the book, the authors argue that the energy yield of photovoltaic devices can be optimized by taking their thermal behavior and operating conditions into consideration in their design.
Thermal Cameras in Science Education (Innovations in Science Education and Technology #26)
by Jesper Haglund Fredrik Jeppsson Konrad J. SchönbornThis book presents a collection of educational research and developmental efforts on the rapidly emerging use of infrared cameras and thermal imaging in science education. It provides an overview of infrared cameras in science education to date, and of the physics and technology of infrared imaging and thermography. It discusses different areas of application of infrared cameras in physics, chemistry and biology education, as well as empirical research on students’ interaction with the technology. It ends with conclusions drawn from the contributions as a whole and a formulation of forward-looking comments.
Thermal Characteristics and Convection in Nanofluids (Lecture Notes in Mechanical Engineering)
by Aditya Kumar Sudhakar SubudhiThis book covers synthesis, characterization, stability, heat transfer and applications of nanofluids. It includes different types of nanofluids, their preparation methods as well as its effects on the stability and thermophysical properties of nanofluids. It provides a discussion on the mechanism behind the change in the thermal properties of nanofluids and heat transfer behaviour. It presents the latest information and discussion on the preparation and advanced characterization of nanofluids. It also consists of stability analysis of nanofluids and discussion on why it is essential for the industrial application. The book provides a discussion on thermal boundary layer properties in convection. Future directions for heat transfer applications to make the production and application of nanofluids at industrial level are also discussed.
Thermal Claddings for Engineering Applications
by Jasbir Singh Lalit Thakur Hitesh VasudevThe text presents advances in the field of thermal claddings for protection against erosion, corrosion, and wear in hydraulic turbines, automobiles, agricultural equipment, power plant, chemical industries, and jet engines. It further discusses different cladding techniques such as electron beam, oxyfuel, arc welding processes, and microwave hybrid heating. It explains the mechanism for failure of materials and cladding and emphasizes the protection mechanism.This book: Discusses the design and simulation of thermal claddings and the use of algorithms to predict the process parameters and performance of developed clads using artificial intelligence and machine learning Presents the tribological behaviour of novel wear-resistant thermal claddings for the components used in construction, mining, drilling, and hydropower plant Showcases high-temperature oxidation, corrosion, and erosion-resistant thermal claddings for power plants, the automotive sector, and jet engines Highlights the application of the thermal cladding process in remelting the existing surface to enhance the surface properties Examines post-heat treatment procedures on thermal claddings for improving the microstructure and tribological properties The text is primarily written for senior undergraduate, graduate students, and academic researchers in the fields of mechanical engineering, manufacturing engineering, industrial engineering, and production engineering.
Thermal Comfort and Energy-Efficient Cooling of Nonresidential Buildings
by Doreen E. Kalz Jens PfafferottThis book supports HVAC planners in reducing the cooling energy demand, improving the indoor environment and designing more cost-effective building concepts. High performance buildings have shown that it is possible to go clearly beyond the energy requirements of existing legislation and obtaining good thermal comfort. However, there is still a strong uncertainty in day-to-day practice due to the lack of legislative regulations for mixed-mode buildings which are neither only naturally ventilated nor fully air-conditioned, but use a mix of different low-energy cooling techniques. Based on the findings from monitoring campaigns (long-term measurements in combination with field studies on thermal comfort), simulation studies, and a comprehensive review on existing standards and guidelines, this book acts as a commonly accessible knowledge pool for passive and low-energy cooling techniques.
Thermal Comfort Assessment of Buildings
by Salvatore CarlucciA number of metrics for assessing human thermal response to climatic conditions have been proposed in scientific literature over the last decades. They aim at describing human thermal perception of the thermal environment to which an individual or a group of people is exposed. More recently, a new type of "discomfort index" has been proposed for describing, in a synthetic way, long-term phenomena. Starting from a systematic review of a number of long-term global discomfort indices, they are then contrasted and compared on a reference case study in order to identify their similarities and differences and strengths and weaknesses. Based on this analysis, a new short-term local discomfort index is proposed for the American Adaptive comfort model. Finally, a new and reliable long-term general discomfort index is presented. It is delivered in three versions and each of them is suitable to be respectively coupled with the Fanger, the European Adaptive and the American Adaptive comfort models.
Thermal Comfort in Hot Dry Climates: Traditional Dwellings in Iran (Routledge Research in Architecture)
by Ahmadreza ForuzanmehrWith increases in global temperatures, the risk of overheating is expected to rise around the world. This results in a much higher dependency upon energy-intensive cooling systems and air-conditioners to provide thermal comfort, but how sustainable is this in a world where problems with the production of electricity are predicted? Vernacular houses in hot and dry central Iran have been adapted to the climate through passive cooling techniques, and this book provides a valuable assessment of the thermal performance of such housing. Shedding new light on the ability of traditional housing forms to provide thermal comfort, Thermal Comfort in Hot Dry Climates identifies the main cooling systems and methods in traditional houses in central Iran, and examines how architectural elements such as central courtyards, distinct seasonal rooms, loggias, basements and wind-catchers can contribute to the provision of thermal comfort in vernacular houses.
Thermal Comfort Perception: A Questionnaire Approach Focusing on Children (Springerbriefs In Applied Sciences And Technology Ser.)
by Kristian FabbriThis book offers a comprehensive exploration of children's understanding and experiences of thermal comfort. The book provides a methodology for evaluating comfort that takes into account the unique perspectives of children. The first part of the book provides an overview of the history of thermal comfort, the human body and environmental parameters, and common thermal comfort indexes. It also offers guidelines for creating questionnaires that accurately assess children's perceptions of indoor thermal comfort. The book then delves into children's understanding of the concepts of comfort and energy, as well as the factors that influence their perception of these concepts. It addresses the psychological and pedagogical aspects of thermal comfort judgment, as well as the architectural and environmental characteristics that contribute to children's perceptions of comfort. First published as Indoor Thermal Comfort Perception, this updated edition also includes new sections on architecture and sensitivity, exploring the impact of classroom spaces on learning, and outdoor education and thermal comfort outdoors, based on qualitative research. These additions provide valuable insights for future studies on these topics. While physical parameter measurements and comfort indexes are useful in thermal comfort, the book emphasizes the importance of ergonomic assessments in the form of questionnaires, which offer unique insights into children's experiences. The book fills a critical gap in understanding children's perceptions of thermal comfort and is essential reading for HVAC engineers, architects, environmental psychologists, and researchers in the medical and cognitive fields.
Thermal Computations for Electronics: Conductive, Radiative, and Convective Air Cooling
by Gordon N. EllisonThe first edition of Thermal Computations for Electronics: Conductive, Radiative, and Convective Air Cooling was based on the author's lecture notes that he developed over the course of nearly 40 years of thermal design and analysis activity, the last 15 years of which included teaching a university course at the senior undergraduate and graduate levels. The subject material was developed from publications of respected researchers and includes topics and methods original to this author. Numerous students have contributed to both the first and second editions, the latter corrected, sections rewritten (e.g., radiation spatial effects, Green's function properties for thermal spreading, 1-D FEA theory and application), and some new material added. The flavor and organization of the first edition have been retained, whereby the reader is guided through the analysis process for systems and then components. Important new material has been added regarding altitude effects on forced and buoyancy driven airflow and heat transfer. The first 20% of the book is devoted to the prediction of airflow and well-mixed air temperatures in systems, circuit board channels, and heat sinks, followed by convective (PCB-mounted components included), radiative, and conductive heat transfer and the resultant temperatures in electronic equipment. Detailed application examples illustrate a variety of problems. Downloads (from the CRC website) include: MathcadTM text examples, exercise solutions (adopting professors only) plus PDF lecture aids (professors only), and a tutorial (Chapter 14) using free FEA software to solve a thermal spreading problem. This book is a valuable professional resource for self-study and is ideal for use in a course on electronics cooling. It is well-suited for a first course in heat transfer where applications are as important as theory.
Thermal Conductivity 23
by Kenneth E. Wilkes; Ralph B. Dinwiddie; Ronald S. GravesThis book contains keynote lectures and 54 technical papers, presented at the 23rd International Thermal Conductivity Conference, on various topics, including techniques, coatings and films, theory, composites, fluids, metals, ceramics, and organics, related to thermal conductivity.
Thermal Conductivity Measurements in Atomically Thin Materials and Devices (SpringerBriefs in Applied Sciences and Technology)
by T. Serkan KasirgaThis book assesses the thermal feasibility of using materials with atomically thin layers such as graphene and the transition metal dichalcogenides family in electronics and optoelectronics applications. The focus is on thermal conductivity measurement techniques currently available for the investigation of thermal performance at the material and device level. In addition to providing detailed information on the available techniques, the book introduces readers to novel techniques based on photothermal effects.
Thermal Contact Conductance
by Chakravarti V. MadhusudanaThe work covers both theoretical and practical aspects of thermal contact conductance. The theoretical discussion focuses on heat transfer through spots, joints, and surfaces, as well as the role of interstitial materials (both planned and inadvertent). The practical discussion includes formulae and data that can be used in designing heat-transfer equipment for a variety of joints, including special geometries and configurations. All of the material has been updated to reflect the latest advances in the field.
Thermal Cracking in Concrete at Early Ages: Proceedings of the International RILEM Symposium
by R. SpringenschmidRestraint and intrinsic stresses in concrete at early ages are vitally important for concrete structures which must remain free of water-permeable cracks, such as water-retaining structures, tunnel linings, locks and dams. The development of hydration heat, stiffness and strength, also the degree of restraint and, especially for high-strength concr
Thermal Cracking of Massive Concrete Structures: State Of The Art Report Of The Rilem Technical Committee 254-cms (RILEM State-of-the-Art Reports #27)
by Miguel Azenha Eduardo M.R. FairbairnThis book provides a State of the Art Report (STAR) produced by RILEM Technical Committee 254-CMS ‘Thermal Cracking of Mas-sive Concrete Structures’. Several recent developments related to the old problem of understanding/predicting stresses originated from the evolution of the hydration of concrete are at the origin of the creation this technical committee. Having identified a lack in the organization of up-to-date scientific and technological knowledge about cracking induced by hydration heat effects, this STAR aims to provide both practitioners and scientists with a deep integrated overview of consolidated knowledge, together with recent developments on this subject.