- Table View
- List View
Ultrasonic Nano/Microfabrication, Handling, and Driving (Emerging Materials and Technologies)
by Junhui HuUltrasonic nano/microfabrication, handling and driving is an emerging actuation technology, which utilizes ultrasonic vibration and the physical effects of ultrasonic vibration in fluids and solids to implement the fabrication, handling and driving of nano/micro scale objects. This book provides readers with the fundamentals, principles and characteristics of the ultrasonic devices for nano/micro fabrication, handling and driving, and design methods of the devices. • Introduces fundamental concepts and offers examples of ultrasonic nano fabrication, including ultrasonic nano rolling, cutting and coating methods. • Features a wealth of examples to illustrate the ultrasonic concentration and ultrasonic tweezers. • Explains the principles of ultrasonic driving of gas molecules and demonstrates their applications in high-performance gas sensor systems and metal-air flow batteries. • Teaches the principles of ultrasonic driving of microfluids and their applications in metal-air flow batteries and cooling of small solid heat sources. • Provides examples for the finite element method (FEM) modeling and computation of ultrasonic devices for nano/micro fabrication, handling and driving. • Summarizes the current and future trends in ultrasonic nano/microfabrication, handling, and driving. This book shares the advances, methods and applications of ultrasonic micro/nano fabrication techniques for entry-level and advanced readers working on nano/microfabrication, gas sensing, biological sensing, metal-air batteries, electronic component cooling, and other related areas.
Ultrasonic Nondestructive Evaluation: Engineering and Biological Material Characterization
by Tribikram KunduMost books on ultrasonic nondestructive evaluation (NDE) focus either on its theoretical background or on advanced applications. Furthermore, information on the most current applications, such as guided wave techniques and acoustic microscopy, is scattered throughout various conference proceedings and journals. No one book has integrated these aspe
Ultrasonic Nondestructive Evaluation Systems
by Pietro Burrascano Sergio Callegari Augusto Montisci Marco Ricci Mario VersaciThis book deals with a number of fundamental issues related to the practical implementation of ultrasonic NDT techniques in an industrial environment. The book discusses advanced academic research results and their application to industrial procedures. The text covers the choice and generation of the signals energizing the system to probe position optimization, from quality assessment evaluation to tomographic inversion. With a focus to deepen a number of fundamental aspects involved in the specific objective of designing and developing an ultrasonic imaging system for nondestructive testing, aimed to automatically classify the entire production of an industrial production line, targeted to the field of precision mechanics. The contents of this book is the result of the common effort of six University Research Groups that focused their research activities for two years on this specific objective, working in direct conjunction with primary industrial firms, in a research project funded by the Italian government as a Strategic Research Project.
Ultrasonic Nondestructive Testing of Materials: Theoretical Foundations
by Klaus Mayer Karl-Jörg Langenberg René MarkleinUltrasonic Nondestructive Testing of Materials: Theoretical Foundations explores the mathematical foundations and emerging applications of this testing process, which is based on elastic wave propagation in isotropic and anisotropic solids. In covering ultrasonic nondestructive testing methods, the book emphasizes the engineering point of view, yet
Ultrasonic Production of Nano-emulsions for Bioactive Delivery in Drug and Food Applications (Springerbriefs In Molecular Science: Chemistry of Foods)
by Sivakumar Manickam Wu Li Muthupandian Ashokkumar Thomas Seak Leong Gregory J. MartinThis SpringerBrief provides an overview of ultrasonic emulsification and an update on recent advances in developing stable emulsions for the creation of novel drugs and functional foods, with a focus on bioactive delivery in these products.Emulsification is the process of combining two or more immiscible liquids to form a semi-stable mixture. These two liquids generally consist of an organic (oil) phase and an aqueous (water) phase that is stabilized by the addition of an emulsifier. Most common emulsions are of the oil-in-water (O/W) type, but can also be of water-in-oil (W/O) or even multiple emulsion types (i.e. double emulsions) in the form of water-in-oil-in-water (W/O/W) or oil-in-water-in-oil (O/W/O) phases. The formation of an emulsion requires input of energy to distribute the disperse phase in the continuous phase in small-sized droplets that are able to resist instability. There is great interest in the use of ultrasound to produce emulsions, as it is able to do so relatively efficiently and effectively compared to existing techniques such as rotor stator, high-pressure homogenization and microfluidization. The interaction of ultrasound with the hydrocolloids and biopolymers that are often used to stabilize emulsions can offer advantages such as improved stability or greater control of formed droplet size distributions.
Ultrasonic Synthesis of Functional Materials
by Muthupandian AshokkumarThis book begins by giving a summary of sonochemistryand explains how a chemical reaction can be induced by the interaction of soundwaves and gas bubbles in liquids. The work outlines how primary and secondaryradicals combined with the physical effects generated during acousticcavitation are active in the ultrasonic synthesis of a variety of functionalmaterials. The brief covers hot topics that include ultrasonic synthesis ofvarious functional materials covering the following broad areas: acoustic cavitationand sonochemistry, synthesis of functional polymers and their applications, synthesisof functional inorganic materials and their applications, improving functionality of food/dairy systems, synthesis of functionalbiomaterials and their applications, synthesis of graphene based catalytic materials. Theory is kept to a minimum. The book is aimed at individuals at universitiesand will also interest those in industry. It is suitable for all levels.
Ultrasonic Treatment of Light Alloy Melts
by G I EskinThis is the first monograph to comprehensively cover the effect of using power ultrasound to refine and solidify aluminium and magnesium alloys. The author is widely regarded as a pioneer in the field, and the text is based on results obtained over the 40 years he has spent developing these techniques. Ultrasonic treatment efficiently removes h
Ultrasonic Treatment of Light Alloy Melts (Advances in Metallic Alloys)
by Georgy I. Eskin Dmitry G. EskinSpawned by growing interest in ultrasonic technology and new developments in ultrasonic melt processing, the Second Edition of Ultrasonic Treatment of Light Alloy Melts discusses use of ultrasonic melt treatment in direct-chill casting, shape casting, rapid solidification, zone refining, and more, exploring the effects of power ultrasound on melt d
Ultrasonic Welding of Metal Sheets
by Susanta Kumar Sahoo Mantra Prasad SatpathyUltrasonic Welding of Metal Sheets covers various aspects of ultrasonic welding (USW) of metal sheets, including the discussion on modeling and numerical simulations of ultrasonic welding to improve this welding process and performance. This book aims to provide an accessible, comprehensive and up-to-date exposition of the various aspects of joining of dissimilar metal sheets ranging from its fundamentals thorough to metallurgical characteristics covering fundamental concepts, in-detailed explanation about the USW including its implementation, design criteria, work material, welding, thermo-mechanical and research scopes. The book is aimed at researchers, professionals and graduate students in manufacturing, welding, mechanical engineering. Features The ultrasonic spot welding of various metal sheets is described in simplified expression and concepts are elucidated by relevant illustrations. Discusses modeling and numerical simulations of ultrasonic welding to improve the ultrasonic welding process and performance As opposed to competition in the market, this title provides thorough clarification of ultrasonic spot welding of metal sheets with its applications.
Ultrasonics: Fundamentals, Technologies, and Applications, Third Edition
by Dale Ensminger Leonard J. BondThe book provides a unique and comprehensive treatment of the science, technology, and applications for industrial and medical ultrasonics, including low- and high-power implementations. The discussion of applications is combined with the fundamental physics, the reporting of the sensors/transducers, and systems for the full spectrum of industrial, nondestructive testing, and medical/bio-medical uses. It includes citations of numerous references and covers both mainstream and the more unusual and obscure applications of ultrasound.
Ultrasonics: Fundamentals, Technologies, and Applications (Mechanical Engineering Ser.)
by Dale Ensminger Leonard J. BondUpdated, revised, and restructured to reflect the latest advances in science and applications, the fourth edition of this best-selling industry and research reference covers the fundamental physical acoustics of ultrasonics and transducers, with a focus on piezoelectric and magnetostrictive modalities. It then discusses the full breadth of ultrasonics applications involving low power (sensing) and high power (processing) for research, industrial, and medical use. This book includes new content covering computer modeling used for acoustic and elastic wave phenomena, including scattering, mode conversion, transmission through layered media, Rayleigh and Lamb waves and flexural plates, modern horn design tools, Langevin transducers, and material characterization. There is more attention on process monitoring and advanced nondestructive testing and evaluation (NDT/NDE), including phased array ultrasound (PAUT), long-range inspection, using guided ultrasonic waves (GUW), internally rotary inspection systems (IRIS), time-of-flight diffraction (TOFD), and acoustic emission (AE). These methods are discussed and applied to both metals and nonmetals using illustrations in various industries, including now additionally for food and beverage products. The topics of defect sizing, capabilities, and limitations, including the probability of detection (POD), are introduced. Three chapters provide a new treatment of high-power ultrasonics, for both fluids and solids, and again, with examples of industrial engineering, food and beverage, pharmaceuticals, petrochemicals, and other process applications. Expanded coverage is given to medical and biological applications, covering diagnostics, therapy, and, at the highest powers, surgery.Key Features Provides an overview of fundamental analysis and transducer technologies needed to design and develop both measurement and processing systems Considers applications in material characterization and metrology Covers ultrasonic nondestructive testing and evaluation and high-power ultrasonics, which involves interactions that change the state of material Highlights medical and biomedical applications of ultrasound, focusing on the physical acoustics and the technology employed for diagnosis, therapy, surgery, and research This book is intended for both the undergraduate and graduate scientists and engineers, as well as the working professional, who seeks to understand the fundamentals together with a holistic treatment of the field of ultrasonics and its diversity of applications.
Ultrasonics: Data, Equations and Their Practical Uses
by Dale Ensminger Foster B. StulenGain a Unique and Comprehensive Understanding of UltrasonicsDespite its importance, most books on ultrasonics cover only very specific sub-fields of the science. They generally also take a more mathematical approach and lack the wider scope needed to truly improve understanding and facilitate practical use of ultrasonics across a wide range of disc
Ultrasound and Infertility
by Asim KurjakA comprehensive survey of the use of ultrasound in management of infertile patients is presented in this publication. Particular atten-tion is given to recently developed techniques such as assessment of endometrial changes, ovarian blood flow measurements, and per-cutaneous oocyte retrieval for in vitro fertilization. The very re-cent technique of transvaginal sonography is presented and richly illus-trated with original results obtained in biopsy-guided oocyte re-trieval, and in the precise delineation of follicle size and number for infertility treatment. Guidance in the interpretation of ultrasonic findings, which include potential limitations and pitfalls, is provided in each chapter. Researchers and practitioners interested in the management of infertile patients will find this volume indispensable.
Ultrasound Elastography for Biomedical Applications and Medicine (Wiley Series in Acoustics Noise and Vibration)
by Ivan Z. Nenadic Matthew W. Urban Jean-Luc Gennisson Miguel Bernal Mikael Tanter James F. GreenleafUltrasound Elastography for Biomedical Applications and Medicine Ivan Z. Nenadic, Matthew W. Urban, James F. Greenleaf, Mayo Clinic Ultrasound Research Laboratory, Mayo Clinic College of Medicine, USA Jean-Luc Gennisson, Miguel Bernal, Mickael Tanter, Institut Langevin – Ondes et Images, ESPCI ParisTech CNRS, France Covers all major developments and techniques of Ultrasound Elastography and biomedical applications The field of ultrasound elastography has developed various techniques with the potential to diagnose and track the progression of diseases such as breast and thyroid cancer, liver and kidney fibrosis, congestive heart failure, and atherosclerosis. Having emerged in the last decade, ultrasound elastography is a medical imaging modality that can noninvasively measure and map the elastic and viscous properties of soft tissues. Ultrasound Elastography for Biomedical Applications and Medicine covers the basic physics of ultrasound wave propagation and the interaction of ultrasound with various media. The book introduces tissue elastography, covers the history of the field, details the various methods that have been developed by research groups across the world, and describes its novel applications, particularly in shear wave elastography. Key features: Covers all major developments and techniques of ultrasound elastography and biomedical applications. Contributions from the pioneers of the field secure the most complete coverage of ultrasound elastography available. The book is essential reading for researchers and engineers working in ultrasound and elastography, as well as biomedical engineering students and those working in the field of biomechanics.
Ultrasound Energy and Data Transfer for Medical Implants (Analog Circuits and Signal Processing)
by Francesco Mazzilli Catherine DehollainThis book presents new systems and circuits for implantable biomedical applications, using a non-conventional way to transmit energy and data via ultrasound. The authors discuses the main constrains (e.g. implant size, battery recharge time, data rate, accuracy of the acoustic models) from the definition of the ultrasound system specification to the in-vitro validation.The system described meets the safety requirements for ultrasound exposure limits in diagnostic ultrasound applications, according to FDA regulations. Readers will see how the novel design of power management architecture will meet the constraints set by FDA regulations for maximum energy exposure in the human body. Coverage also includes the choice of the acoustic transducer, driven by optimum positioning and size of the implanted medical device. Throughout the book, links between physics, electronics and medical aspects are covered to give a complete view of the ultrasound system described.Provides a complete, system-level perspective on the use of ultrasound as energy source for medical implants;Discusses system design concerns regarding wireless power transmission and wireless data communication, particularly for a system in which both are performed on the same channel/frequency;Describes an experimental study on implantable battery powered biomedical systems;Presents a fully-integrated, implantable system and hermetically sealed packaging.
Ultrasound-Guided Regional Anesthesia in Children
by Mannion, Stephen and Iohom, Gabriella and Dadure, Christophe and Reisbig, Mark D. and Ganesh, Arjunan Stephen Mannion Gabriella Iohom Christophe Dadure Mark D. Reisbig Arjunan GaneshUltrasound has revolutionized the practice of regional anesthesia, yet there remains a paucity of good resources on ultrasound-guided regional anesthesia in children. This book offers a much-needed practical guide to all the major ultrasound-guided blocks in pediatric patients, including neuraxial, truncal, upper and lower limb blocks. The core principles of good clinical practice in regional anesthesia are described and discussed, including the pharmacology of local anesthetics in children, the performance of regional anesthesia, the management of complications, and the clinical anatomy of each block. Every block chapter provides both a 'how to' section and also a comprehensive literature review, with an up-to-date and relevant bibliography for reference and further reading. Chapters are illustrated with unique anatomical images and detailed descriptions. Both trainee and experienced anesthesiologists will find this an essential resource for the safe and effective performance of modern regional anesthesia in children.
Ultrasound Imaging and Therapy (Imaging In Medical Diagnosis And Therapy Ser.)
by Aaron Fenster James C. LacefieldUp-to-Date Details on Using Ultrasound Imaging to Help Diagnose Various DiseasesDue to improvements in image quality and the reduced cost of advanced features, ultrasound imaging is playing a greater role in the diagnosis and image-guided intervention of a wide range of diseases. Ultrasound Imaging and Therapy highlights the latest advances in usin
Ultrasound in Food Processing: Recent Advances
by Antonia Montilla Jose Benedito Jose V. Garcia-Perez Juan A. Carcel Mar VillamielPart I: Fundamentals of ultrasound This part will cover the main basic principles of ultrasound generation and propagation and those phenomena related to low and high intensity ultrasound applications. The mechanisms involved in food analysis and process monitoring and in food process intensification will be shown. Part II: Low intensity ultrasound applicationsLow intensity ultrasound applications have been used for non-destructive food analysis as well as for process monitoring. Ultrasonic techniques, based on velocity, attenuation or frequency spectrum analysis, may be considered as rapid, simple, portable and suitable for on-line measurements. Although industrial applications of low-intensity ultrasound, such as meat carcass evaluation, have been used in the food industry for decades, this section will cover the most novel applications, which could be considered as highly relevant for future application in the food industry. Chapters addressing this issue will be divided into three subsections: (1) food control, (2) process monitoring, (3) new trends. Part III: High intensity ultrasound applicationsHigh intensity ultrasound application constitutes a way to intensify many food processes. However, the efficient generation and application of ultrasound is essential to achieving a successful effect. This part of the book will begin with a chapter dealing with the importance of the design of efficient ultrasonic application systems. The medium is essential to achieve efficient transmission, and for that reason the particular challenges of applying ultrasound in different media will be addressed.The next part of this section constitutes an up-to-date vision of the use of high intensity ultrasound in food processes. The chapters will be divided into four sections, according to the medium in which the ultrasound vibration is transmitted from the transducers to the product being treated. Thus, solid, liquid, supercritical and gas media have been used for ultrasound propagation. Previous books addressing ultrasonic applications in food processing have been based on the process itself, so chapters have been divided in mass and heat transport, microbial inactivation, etc. This new book will propose a revolutionary overview of ultrasonic applications based on (in the authors’ opinion) the most relevant factor affecting the efficiency of ultrasound applications: the medium in which ultrasound is propagated. Depending on the medium, ultrasonic phenomena can be completely different, but it also affects the complexity of the ultrasonic generation, propagation and application.In addition, the effect of high intensity ultrasound on major components of food, such as proteins, carbohydrates and lipids will be also covered, since this type of information has not been deeply studied in previous books.Other aspects related to the challenges of food industry to incorporate ultrasound devices will be also considered. This point is also very important since, in the last few years, researchers have made huge efforts to integrate fully automated and efficient ultrasound systems to the food production lines but, in some cases, it was not satisfactory. In this sense, it is necessary to identify and review the main related problems to efficiently produce and transmit ultrasound, scale-up, reduce cost, save energy and guarantee the production of safe, healthy and high added value foods.
Ultrasound in the Critically Ill: A Practical Guide
by Andrew Walden Andrew Campbell Ashley Miller Matthew WiseThis book provides a practically applicable guide to the use of ultrasound in the care of acutely and critically ill patients. It is laid out in two sections. The first section attempts to take a comprehensive approach to specific systems of examination taking an organ focused approach covering techniques including Focussed Assessment with Sonography for Trauma (FAST) scanning and venous sonography. The second section presents a range of specific cases enabling the reader to develop an understanding of how to apply these methodologies effectively into their day-to-day clinical practice.Ultrasound in the Critically Ill: A Practical Guide describes how to use ultrasound technologies in day-to-day clinical practice. Therefore, it is an ideal resource for all trainee and practicing physicians who utilize these technologies on a day-to-day basis.
Ultrasound Program Management
by Vivek S. Tayal Michael Blaivas Troy R FosterThis book addresses the wide range of issues that face the program leader - from how to choose a site and how to negotiate for equipment, to how to determine staffing requirements and how to anticipate and defuse possible turf issues with other programs and services in the hospital or healthcare facility. The early chapters of this book focus on the leadership of your program whether in your department or institution. The second section centers on education at all levels recognizing that smaller machines have made ultrasound available for medical students to advanced practitioners. The third section provides detailed logistics on equipment, maintenance, and safety. The fourth section focuses on a quality improvement program and includes a chapter on the workflow process. For those with limited budgets we also offer a section on practical operating and educational solutions. The fifth section offers insight into hospital level credentialing, quality assurance, national politics, and recent issues with accreditation. This is followed by reimbursement and coding. The last section covers topics in specialized communities. Chapters focus on ultrasound in global health, emergency medical services, pediatrics, critical care, community and office based practices. Multiple US working documents including checklists, graphs, spreadsheets, tables, and policy appendices are included.
Ultrasound Technologies for Food and Bioprocessing
by Hao Feng Jochen Weiss Gustavo Barbosa-CanovasTraditional food and bioprocessing technologies are facing challenges due to high expectation from the consumers and producers for better quality and safety, higher process efficiency, and products with novel properties or functionalities. For this reason, in the last few years new forms of physical energies have been explored to propose alternatives to traditional processing technologies. Acoustic energy has the potential to replace or partially substitute conventional processes, and at the same time offer unique opportunities in the characterization of foods and biomaterials. This book is a resource for experts and newcomers in the field of power ultrasound, gives insights into the physical principles of this technology, details the latest advancements, and links them to current and potential applications in the food and bioprocessing related industries.
Ultrasound Technology in Dairy Processing (SpringerBriefs in Molecular Science)
by Jayani Chandrapala Bogdan ZisuThis SpringerBrief provides an overview of the use of ultrasound in various dairy applications, highlighting their significant benefits for the dairy industry, including energy savings and product improvement. It describes in detail the physical and chemical effects of high- and low-frequency power ultrasound in specific applications such as emulsification, ultrafiltration, crystallisation, inactivation of microbes, functionality modifications of secondary dairy products and fat separation.Although to date the majority of these applications have only been proven in the laboratory, some have been successfully implemented on a larger scale. By offering a concise review that includes the transition from laboratory-scale projects to large-scale commercialization, this SpringerBrief fills a gap in the literature. Ultrasound processing has the advantage of minimising flavour loss, increasing homogeneity, reducing energy requirements, reducing processing times, enhancing end-product quality, reducing chemical and physical hazards and lowering the environmental impact compared to conventional dairy processes. As a result, the use of ultrasound in the dairy industry has become a hot topic and has generated considerable research interest in recent years. The SpringerBrief is intended for industry professionals, researchers and graduate students with a basic understanding of simple ultrasound, especially those starting on a new topic of research or coming into the field.
Ultrathin Carbon-Based Overcoats for Extremely High Density Magnetic Recording
by Reuben Jueyuan YeoThis book presents the latest research in ultrathin carbon-based protective overcoats for high areal density magnetic data storage systems, with a particular focus on hard disk drives (HDDs) and tape drives. These findings shed new light on how the microstructure and interfacial chemistry of these sub-20 nm overcoats can be engineered at the nanoscale regime to obtain enhanced properties for wear, thermal and corrosion protection – which are critical for such applications. Readers will also be provided with fresh experimental insights into the suitability of graphene as an atomically-thin overcoat for HDD media. The easy readability of this book will appeal to a wide audience, ranging from non-specialists with a general interest in the field to scientists and industry professionals directly involved in thin film and coatings research.
Ultrathin Metal Transparent Electrodes for the Optoelectronics Industry
by Dhriti Sundar GhoshTransparent electrodes (TEs) are a class of materials that make it possible to bring electrical current or potentials in close proximity to optically active regions without significant loss of optical energy. However, it is a challenge to decouple the electrical and optical properties of a material, as the property of conductivity is strongly coupled to the imaginary part of the refractive index. An ideal TE has high transparency in combination with very low electrical resistivity. The main objective of the thesis was to develop TEs which can replace expensive, scarce and fragile Indium Tin Oxide (ITO), the most widely used TE material in the industry today. The thesis contains original work on ultrathin metal film (UTMF)-based TEs, which are essential elements in a wide range of optoelectronics, consumer electronics and energy devices. It presents new designs and fabrication methods and demonstrates the efficient use of UTMF-TEs in organic light emitting diodes and solar cells, achieving similar levels of efficiency to that of state-of-the-art ITO.
Ultrathin Two-Dimensional Semiconductors for Novel Electronic Applications
by Mohammad Karbalaei Akbari Serge ZhuiykovOffering perspective on both the scientific and engineering aspects of 2D semiconductors, Ultrathin Two-Dimensional Semiconductors for Novel Electronic Applications discusses how to successfully engineer 2D materials for practical applications. It also covers several novel topics regarding 2D semiconductors which have not yet been discussed in any other publications. Features: Provides comprehensive information and data about wafer-scale deposition of 2D semiconductors, ranging from scientific discussions up to the planning of experiments and reliability testing of the fabricated samples Precisely discusses wafer-scale ALD and CVD of 2D semiconductors and investigates various aspects of deposition techniques Covers the new group of 2D materials synthesized from surface oxide of liquid metals and also explains the device fabrication and post-treatment of these 2D nanostructures Addresses a wide range of scientific and practical applications of 2D semiconductors and electronic and optoelectronic devices based on these nanostructures Offers novel coverage of 2D heterostructures and heterointerfaces and provides practical information about fabrication and application of these heterostructures Introduces the latest advancement in fabrication of novel memristors, artificial synapses and sensorimotor devices based on 2D semiconductors This work offers practical information valuable for engineering applications that will appeal to researchers, academics, and scientists working with and interested in developing an array of semiconductor electronic devices.