- Table View
- List View
Biomedical and Other Applications of Soft Computing (Studies in Computational Intelligence #1045)
by Nguyen Hoang Phuong Vladik KreinovichThis book describes current and potential use of artificial intelligence and computational intelligence techniques in biomedicine and other application areas. Medical applications range from general diagnostics to processing of X-ray images to e-medicine-related privacy issues. Medical community understandably prefers methods that have been successful other on other application areas, where possible mistakes are not that critical. This book describes many promising methods related to deep learning, fuzzy techniques, knowledge graphs, and quantum computing. It also describes the results of testing these new methods in communication networks, education, environmental studies, food industry, retail industry, transportation engineering, and many other areas. This book helps practitioners and researchers to learn more about computational intelligence methods and their biomedical applications—and to further develop this important research direction.
Biomedical and Pharmaceutical Applications of Electrochemistry (Modern Aspects of Electrochemistry #60)
by Stojan DjokićThis volume of Modern Aspects of Electrochemistry reviews the latest developments in electrochemical science and technology related to biomedical and pharmaceutical applications. In particular, this book discusses electrochemical applications to medical devices, implants, antimicrobially active materials, and drug delivery systems.
Biomedical and Resonance Optics: Theory and Practice (Bioanalysis #11)
by Leonid V. Tanin Andrei L. TaninThis book discusses fundamentally new biomedical imaging methods, such as holography, holographic and resonant interferometry, and speckle optics. It focuses on the development of holographic interference microscopy and its use in the study of phase objects such as nerve and muscle fibers subjected to the influence of laser radiation, magnetic fields, and hyperbaric conditions. The book shows how the myelin sheath and even the axon itself exhibit waveguide properties, enabling a fresh new look at the mechanisms of information transmission in the human body. The book presents theoretically and experimentally tested holographic and speckle-optical methods and devices used for investigating complex, diffusely scattering surfaces such as skin and muscle tissue. Additionally, it gives broad discussion of the authors’ own original fundamental and applied research dedicated to helping physicians introduce new contact-less methods of diagnosis and treatment of diseases of the cardiovascular and neuromuscular systems into medical practice. The book is aimed at a broad spectrum of scientific specialists in the fields of speckle optics, holography, laser physics, morphology and cytochemistry, as well as medical professionals such as physiologists, neuropathologists, neurosurgeons, cardiologists and dentists.
Biomedical Applications (Modern Aspects of Electrochemistry #55)
by Stojan S. DjokićVarious metallic or non-metallic surfaces are frequently treated by elewctrochemical methods (e.g. electrodeposition, electroless deposition, anodization, passivation, etc.) in order to achieve a desirable property important for biomedical applications. Applications include orthopedic or dental implants, dressings for wound healing and different skin diseases, surfaces for the prevention of bio-film formation of corrosion inhibition in biological media. The aim of this issue of Modern Aspects of Electrochemistry is to review the latest developments of the surface treatments for biomedical applications in relation to electrochemical science and technology. This new volume of Modern Aspect of Electrochemistry brings to the scientists, engineers and students summarized results and new concepts of surface treatments for the biomedical applications which may have significant influence for the future practical applications.
Biomedical Applications and Toxicity of Nanomaterials
by P. V. Mohanan Sudha KappalliThis book covers the recent trends on the biological applications of nanomaterials, methods for their preparation, and techniques for their characterization. Further, the book examines the fundamentals of nanotoxicity, methods to assess the toxicity of engineered nanomaterials, approaches to reduce toxicity during synthesis. It also provides an overview of the state of the art in the application of Artificial intelligence-based methodologies for evaluation of toxicity of drugs and nanoparticles. The book further discusses nanocarrier design, routes of various nanoparticle administration, nano based drug delivery systems, and the toxicity challenges associated with each drug delivery method. It presents the latest advances in the interaction of nanoparticles with the cellular environment and assess nanotoxicity of these engineered nanoparticles. The book also explores the comparative and mechanistic genotoxicity assessment of the nanomaterials. This book is useful source of information for industrial practitioners, policy makers, and other professionals in the fields of toxicology, medicine, pharmacology, food, and drugs.
Biomedical Applications of Hydrogels Handbook
by Teruo Okano Kinam Park Raphael M. Ottenbrite Nicholas A. PeppasHydrogels are networks of polymer chains which can produce a colloidal gel containing over 99 per cent water. The superabsorbency and permeability of naturally occurring and synthetic hydrogels give this class of materials an amazing array of uses. These uses range from wound dressings and skin grafts to oxygen-permeable contact lenses to biodegradable delivery systems for drugs or pesticides and scaffolds for tissue engineering and regenerative medicine. Biomedical Applications of Hydrogels Handbook provides a comprehensive description of this diverse class of materials, covering both synthesis and properties and a broad range of research and commercial applications. The Handbook is divided into four sections: Stimuli-Sensitive Hydrogels, Hydrogels for Drug Delivery, Hydrogels for Tissue Engineering, and Hydrogels with Unique Properties. Key Features: Provides comprehensive coverage of the basic science and applications of a diverse class of materials Includes both naturally occurring and synthetic hydrogels Edited and written by world leaders in the field.
Biomedical Applications of Magnetic Particles
by Jeffrey N. Anker O. Thompson MeffordBiomedical Applications of Magnetic Particles discusses fundamental magnetic nanoparticle physics and chemistry and explores important biomedical applications and future challenges. The first section presents the fundamentals of the field by explaining the theory of magnetism, describing techniques to synthesize magnetic particles, detailing methods to characterize magnetic particles, and quantitatively describing the applied magnetic forces, torques, and the resultant particle motions. The second section describes the wide range of biomedical applications, including chemical sensors, cellular actuators, drug delivery, magnetic hyperthermia, magnetic resonance imaging contrast enhancement, and toxicity. Additional key features include: Covers both introduction to physics and characterization of magnetic nanoparticles and the state of the art in biomedical applications Authoritative reference for scientists and engineers for all new or old to the field Describes how the size of magnetic nanoparticles affects their magnetic properties, colloidal properties, and biological properties. Written by a team of internationally respected experts, this book provides an up-to-date authoritative reference for scientists and engineers.
Biomedical Applications of Mesoporous Ceramics: Drug Delivery, Smart Materials and Bone Tissue Engineering
by María Vallet-Regí Miguel Manzano García Montserrat ColillaDevelopments in mesoporous ceramics in drug delivery, nanomedicine, and bone tissue regeneration have opened promising developments in biomedical research, many applicable in the clinic in the near future. Due to the ability to fine-tune the physicochemical properties of these materials, the field has experienced an impressive burst in the number o
Biomedical Applications of Natural Proteins: An Emerging Era in Biomedical Sciences (SpringerBriefs in Biochemistry and Molecular Biology)
by Dhiraj Kumar Rajesh R. KundapurThis book is intended as a reference guide for graduate students, postgraduate students and researchers with a basic knowledge of protein chemistry who would like to know more about the biomedical applications of natural proteins to promote healthier lives. The book is divided into ten chapters, each of which explains different natural proteins and their established biomedical applications. The first chapter extensively deals with protein based natural fibers and provides an overview of all protein based fibers currently available. In turn, chapter two mainly focuses on the biomedical applications of a special class of proteins called Heat Shock Proteins; the biomedical applications of silkworm pupae proteins are dealt in chapter three. Chapter four examines an interesting use of Eri silk fibroin as a biomaterial for Tissue Engineering, while chapter five discusses the key experimental details involved in converting Tasar silk sericin into self-assembled nanoparticles. Chapter six offers brief descriptions of bioactive proteins with respect to their sources, synthesis and applications. Chapter seven is dedicated to Interleukine-8 and its role in human life, while chapter eight addresses the importance of natural proteins in infectious diseases. Chapter nine explores the issue of excess intake of dietary proteins and its adverse effects, and finally, chapter ten discusses the efficiency of drug delivery systems made up of gelatin nanocomposites. The book is above all intended as a valuable resource for students and researchers alike, sparking their curiosity with regard to the applications of natural proteins and motivating them to focus their own energies on the discovery or identification of additional natural proteins for diverse biomedical uses.
Biomedical Applications of Polymeric Materials and Composites
by D. Sakthi Kumar Raju FrancisWith its content taken from only the very latest results, this is an extensive summary of the various polymeric materials used for biomedical applications. Following an introduction listing various functional polymers, including conductive, biocompatible and conjugated polymers, the book goes on to discuss different synthetic polymers that can be used, for example, as hydrogels, biochemical sensors, functional surfaces, and natural degradable materials. Throughout, the focus is on applications, with worked examples for training purposes as well as case studies included. The whole is rounded off with a look at future trends.
Biomedical Applications of Polymeric Nanofibers (Advances in Polymer Science #246)
by Rangasamy Jayakumar Shantikumar NairMultiscale Fibrous Scaffolds in Regenerative Medicine, by Sowmya Srinivasan, R. Jayakumar, K. P. Chennazhi, Erica J. Levorson, Antonios G. Mikos and Shantikumar V. Nair; Stem Cells and Nanostructures for Advanced Tissue Regeneration, by Molamma P. Prabhakaran, J. Venugopal, Laleh Ghasemi-Mobarakeh, Dan Kai Guorui Jin and Seeram Ramakrishna; Creating Electrospun Nanofiber-Based Biomimetic Scaffolds for Bone Regeneration, by Eleni Katsanevakis, Xuejun Wen and Ning Zhang; Synthetic/Biopolymer Nanofibrous Composites as Dynamic Tissue Engineering Scaffolds, by J. A. Kluge and R. L. Mauck; Electrospun Fibers as Substrates for Peripheral Nerve Regeneration, by Jörg Mey, Gary Brook, Dorothée Hodde and Andreas Kriebel; Highly Aligned Polymer Nanofiber Structures: Fabrication and Applications in Tissue Engineering, by Vince Beachley, Eleni Katsanevakis, Ning Zhang, Xuejun Wen; Electrospinning of Biocompatible Polymers and Their Potentials in Biomedical Applications, by Pitt Supaphol, Orawan Suwantong, Pakakrong Sangsanoh, Sowmya Srinivasan, Rangasamy Jayakumar and Shantikumar V. Nair; Electrospun Nanofibrous Scaffolds-Current Status and Prospects in Drug Delivery, by M. Prabaharan, R. Jayakumar and S. V. Nair.; Biomedical Applications of Polymer/Silver Composite Nanofibers, by R. Jayakumar, M. Prabaharan, K. T. Shalumon, K. P. Chennazhi and S. V. Nair.-
Biomedical Composites: Perspectives and Applications (Materials Horizons: From Nature to Nanomaterials)
by Amit Kumar Nayak Md Saquib HasnainThis book provides an overview of biocomposite chemistry, chemical modifications, characterization and applications in biomedicine, with emphasis on recent advances in the field. Authored by experts, the chapters discuss the design, development and selection of biomedical composites for a particular therapeutic application, as well as providing insight into the regulatory and clinical aspects of biomedical composite use. While this book is primarily intended for scientists from the fields of medical, pharmaceutical, biotechnological and biomedical engineering, it is also useful as an advanced text for students and research scholars.
Biomedical Computing: Digitizing Life in the United States (The Johns Hopkins University Studies in Historical and Political Science #130)
by Joseph A. NovemberWinner of the Computer History Museum Prize of the Special Interest Group: Computers, Information, and SocietyImagine biology and medicine today without computers. What would laboratory work be like if electronic databases and statistical software did not exist? Would disciplines like genomics even be feasible if we lacked the means to manage and manipulate huge volumes of digital data? How would patients fare in a world absent CT scans, programmable pacemakers, and computerized medical records?Today, computers are a critical component of almost all research in biology and medicine. Yet, just fifty years ago, the study of life was by far the least digitized field of science, its living subject matter thought too complex and dynamic to be meaningfully analyzed by logic-driven computers. In this long-overdue study, historian Joseph November explores the early attempts, in the 1950s and 1960s, to computerize biomedical research in the United States.Computers and biomedical research are now so intimately connected that it is difficult to imagine when such critical work was offline. Biomedical Computing transports readers back to such a time and investigates how computers first appeared in the research lab and doctor's office. November examines the conditions that made possible the computerization of biology—including strong technological, institutional, and political support from the National Institutes of Health—and shows not only how digital technology transformed the life sciences but also how the intersection of the two led to important developments in computer architecture and software design. The history of this phenomenon has been only vaguely understood. November's thoroughly researched and lively study makes clear for readers the motives behind computerizing the study of life and how that technology profoundly affects biomedical research today.
Biomedical Data Analysis and Processing Using Explainable (Intelligent Systems Reference Library #222)
by Aditya Khamparia Deepak Gupta Ashish Khanna Valentina E. BalasThe book discusses Explainable (XAI) and Responsive Artificial Intelligence (RAI) for biomedical and healthcare applications. It will discuss the advantages in dealing with big and complex data by using explainable AI concepts in the field of biomedical sciences. The book explains both positive as well as negative findings obtained by explainable AI techniques. It features real time experiences by physicians and medical staff for applied deep learning based solutions. The book will be extremely useful for researchers and practitioners in advancing their studies.
Biomedical Devices: Materials, Design, and Manufacturing
by Raymond H. Lam Weiqiang ChenThis textbook provides essential knowledge for biomedical product development, including material properties, fabrication processes and design techniques for different applications, as well as process design and optimization. This book is multidisciplinary and readers can learn techniques to apply acquired knowledge for various applications of biomedical design. Further, this book encourages readers to discover and convert newly reported technologies into products and services for the future development of biomedical applications. This is an ideal book for upper-level undergraduate and graduate students, engineers, technologists, and researchers working in the area of biomedical engineering and manufacturing.This book also:Provides a comprehensive set of fundamental knowledge for engineering students and entry level engineers to design biomedical devicesOffers a unique approach to manufacturing of biomedical devices by integrating and formulating different considerations in process design tasks into optimization problemsProvides a broad range of application examples to guide readers through the thinking process of designing and manufacturing biomedical devices, from basic understanding about the requirements and regulations to a set of manufacturing parameters
Biomedical Devices and Sensors
by Jérôme MolimardMonitoring the human body is a key element of digital health science. Low-cost sensors derived from smartphones or smartwatches may give the impression that sensors are readily available; however, to date, very few of them are actually medical devices. Designing medical devices requires us to undertake a specific approach demanding special skills, as it concerns the integrity of the human body. The process is tightly framed by state regulations in order to ensure compliance with quality assessment, risk management and medical ethics requirements. This book aims to give biomedical students an overview on medical devices design. It firstly gives a historical and economical approach, then develops key elements in medical device design with reference to EU and US regulations, and finally describes sensors for the human body. The clinical approach is presented as the central element in medical device qualification and this offers a perspective on the use of numerical simulation, particularly since its continued growth in the USA; despite the fact that the approach is strictly limited by regulations.
Biomedical Electronics, Noise Shaping ADCs, and Frequency References: Advances in Analog Circuit Design 2022
by Pieter Harpe Andrea Baschirotto Kofi A. A. MakinwaThis book is based on the 18 tutorials presented during the 30th workshop on Advances in Analog Circuit Design. Expert designers present readers with information about a variety of topics at the frontier of analog circuit design, with specific contributions focusing on analog circuits for machine learning, current/voltage/temperature sensors, and high-speed communication via wireless, wireline, or optical links. This book serves as a valuable reference to the state-of-the-art, for anyone involved in analog circuit research and development.
Biomedical Engineering: Materials, Technology, and Applications
by Hossein HosseinkhaniBiomedical Engineering An exploration of materials processing and engineering technology across a wide range of medical applications The field of biomedical engineering has played a vital role in the progression of medical development technology. Biomedical Engineering: Materials, Technology, and Applications covers key aspects of the field—from basic concepts to advanced level research for medical applications. The book stands as a source of inspiration for research on materials as well as their development and practical application within specialized industries. It begins with a discussion of what biomedical engineering is and concludes with a final chapter on the advancements of biomaterials technology in medicine. Offers comprehensive coverage of topics, including biomaterials, tissue engineering, bioreceptor interactions, and various medical applications Discusses applications in critical industries such as biomedical diagnosis, pharmaceutics, drug delivery, cancer detection, and more Serves as a reference for those in scientific, medical, and academic fields Biomedical Engineering takes an interdisciplinary look at how biomedical science and engineering technology are integral to developing novel approaches to major problems, such as those associated with disease diagnosis and drug delivery. By covering a full range of materials processing and technology-related subjects, it shares timely information for biotechnologists, material scientists, biophysicists, chemists, bioengineers, nanotechnologists, and medical researchers.
Biomedical Engineering: AI and Technological Innovations (Series in BioEngineering)
by Khin Wee Lai Pauline Shan Qing YeohThis book brings together contributions from leading experts in the field, each addressing a critical area where AI and technology are making significant impacts. The chapters encompass a wide range of topics, from the application of machine learning in cancer grading and maternal health monitoring to the development of innovative wearable devices and advanced diagnostic tools. The book not only underscores the transformative potential of AI and technology in biomedical; but also serves as a vital resource for researchers, practitioners, and students. By showcasing the latest research and innovations, this book aims to inspire continued exploration and development in this dynamic and rapidly evolving field.
Biomedical Engineering: Bridging Medicine and Technology
by W. Mark SaltzmanThis book is an introduction to biomedical engineering, starting from the basics and demonstrating the engineering principles that are used to create new diagnostic methods and therapies for human disease. Although biomedical engineering is a relatively new field of study, it will impact almost every person in the world.
Biomedical Engineering: Health Care Systems, Technology and Techniques
by Sang C. Suh Varadraj Gurupur Murat M. TanikBiomedical Engineering: Health Care Systems, Technology and Techniques is an edited volume with contributions from world experts. It provides readers with unique contributions related to current research and future healthcare systems. Practitioners and researchers focused on computer science, bioinformatics, engineering and medicine will find this book a valuable reference.
Biomedical Engineering and Computational Intelligence: Proceedings of The World Thematic Conference—Biomedical Engineering and Computational Intelligence, BIOCOM 2018 (Lecture Notes in Computational Vision and Biomechanics #32)
by João Manuel R. S. Tavares Nilanjan Dey Amit JoshiThis book reports on timely research at the interface between biomedical engineering and intelligence technologies applied to biology and healthcare. It covers cutting-edge methods applied to biomechanics and robotics, EEG time series analysis, blood glucose prediction models, among others. It includes ten chapters, which were selected upon a rigorous peer-review process and presented at the 1st World Thematic Conference - Biomedical Engineering and Computational Intelligence, BIOCOM 2018, held in London, United Kingdom, during October 30–31, 2018.
Biomedical Engineering and Environmental Engineering: Proceedings of the 2014 2nd International Conference on Biomedical Engineering and Environmental Engineering (ICBEEE 2014), December 24-25, 2014, Wuhan, China
by David ChanThis conference series is a forum for enhancing mutual understanding between Biomedical Engineering and Environmental Engineering field. This proceeding provides contributions from many experts representing industry and academic establishments worldwide. The researchers are from different countries and professional. The conference brought 
Biomedical Engineering and its Applications in Healthcare
by Sudip PaulThis book illustrates the significance of biomedical engineering in modern healthcare systems. Biomedical engineering plays an important role in a range of areas, from diagnosis and analysis to treatment and recovery and has entered the public consciousness through the proliferation of implantable medical devices, such as pacemakers and artificial hips, as well as the more futuristic technologies such as stem cell engineering and 3-D printing of biological organs. Starting with an introduction to biomedical engineering, the book then discusses various tools and techniques for medical diagnostics and treatment and recent advances. It also provides comprehensive and integrated information on rehabilitation engineering, including the design of artificial body parts, and the underlying principles, and standards. It also presents a conceptual framework to clarify the relationship between ethical policies in medical practice and philosophical moral reasoning. Lastly, the book highlights a number of challenges associated with modern healthcare technologies.
Biomedical Engineering and Neuroscience: Proceedings Of The 3rd International Scientific Conference On Brain-computer Interfaces, Bci 2018, March 13-14, Opole, Poland (Advances In Intelligent Systems And Computing #720)
by Wojciech P. Hunek Szczepan PaszkielThis edition of the volume ‘Advances in Intelligent Systems and Computing’ presents the proceedings of the 3rd International Scientific Conference BCI. The event was held at Opole University of Technology in Poland on 13 and 14 March 2018. Since 2014 the conference has taken place every two years at the University’s Faculty of Electrical Engineering, Automatic Control and Informatics. The conference focused on the issues relating to new trends in modern brain–computer interfaces (BCI) and control engineering, including neurobiology–neurosurgery, cognitive science–bioethics, biophysics–biochemistry, modeling–neuroinformatics, BCI technology, biomedical engineering, control and robotics, computer engineering and neurorehabilitation–biofeedback.In addition to paper presentations, the scientific program also included a number of practical demonstrations covering, for example, the on-line control of mobile robot and unmanned aerial vehicle using the BCI technology.